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Abstract: Advances in informatics, robotics, and imaging
techniques make it possible to use state-of-the-art digital
reconstruction technologies for high-throughput plant phe-
notyping (HTPP) affected by stress factors, as well as for the
ontology of their structural and functional traits. Digital
imaging of structural and functional features of the above-
ground part of plants is non-destructive and plants can be
monitored throughout their entire life cycle. In the experi-
ment with tomato plants (Solanum lycopersicum L.; cv.
Gruzanski zlatni) grown in controlled environmental
conditions and affected by gradual soil dehydration, we
evaluated phenotypic traits and phenotypic plasticity by
the PlantScreenTM platform using digital imaging of plant
optical signals. In this study, 25 different morpho-physiolo-
gical traits of the plant were evaluated during the precise
control and monitoring of the water content in the soil.
Different levels of plant water supply induced statistically
significant differences in the formation of individual phe-
notypic traits. Several plant traits have been identified that
are characterized by low variability in both well-hydrated

and water-stressed conditions, as well as traits with high
phenotypic plasticity. Geometric traits (especially Isotop,
Round-2top, and Compside) showed a relatively low level
of drought-induced phenotypic plasticity. However, functional
and chemometric characteristics (ΔF/F′m, Rfd, Water-1, and
ARI-1) showed the potential to exhibit rapid plasticity in
water-stressed conditions. Our results confirmed that a high-
throughput phenotyping methodology coupled with advanced
statistical analysis tools can be successfully applied to charac-
terize crop stress responses and identify traits associated with
crop stress tolerance.

Keywords: high-throughput phenotyping, imaging, chloro-
phyll fluorescence, chemometrics, tomato, drought

1 Introduction

Environmental stress situations, such as drought, sub- and
supra-optimal temperature, salinity, etc., significantly affect
plant productivity. Drought in the context of ongoing climate
change is one of the most frequently occurring constraints,
resulting in a reduction of plant growth, development, and
yield [1]. The urgency of studying the agrobiological conse-
quences of drought on the molecular, physiological, and
yield-forming processes of crops is also compounded by
the increasing need for food [2]. Nowadays, many sophisti-
cated tools are available to researchers studying plant
responses to various stress situations, including drought
[3]. Advances across multiple omics techniques open new
possibilities for a comprehensive description of the mechan-
isms of plant reactions to stress [4–6].

Under drought stress, many physiological processes
are affected, such as leaf expansion [7], stomatal behaviors
[8], photosynthesis, transpiration, source-sink relationship,
and translocation of assimilates [9–12], resulting in both
root and shoot growth. The complexity of plant responses
to drought has been observed. Drought tolerance in plants
is manifested by effects such as scavenging of reactive
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oxygen species, osmotic adjustment, changes in membrane
lipid composition and hormonal balance, and modulation
of photosynthesis and water use efficiency [11,13–16]. These
characteristics of plant drought tolerance are widely used
in plant stress physiology, crop breeding, and agronomy.
However, the quantification of these signs is time-con-
suming, often destructive, difficult to carry out simulta-
neously, and requires experienced personnel capacities
(e.g., [17,18]). These are the main reasons why we are
looking for new, quick, and expeditious techniques that
will enable a reliable quantitative description of plant phe-
notypic traits and screening criteria, reflecting the mechan-
isms of plant tolerance to abiotic stress situations.

In contrast to the current genomic analyses using next-
generation sequencing, the bottleneck in the selection of
biological material and stress-induced phenotype plasticity
is the quantitative description of the plant phenome [19,20].
Recent progress in the construction and application of
optical-based plant phenotyping techniques allows non-
destructively and quickly a large number of individuals,
as well as many structural and functional plant traits
[17,21,22]. A key benefit of high-throughput plant pheno-
typing (HTPP) is the non-destructive imaging and computer
vision of plant optical signals, which allows the creation of
time series measurements of individual plant traits at high
resolution and high precision. Over the last two decades,
dozens of automated phenotyping installations have been
created worldwide, which are capable of characterizing
plant performance and phenotypic plasticity in various fully
regulated or semi-regulated environmental conditions [23–31].
HTPPs enable the screening of biological material of many
plant species tolerant to stress situations by focusing on the
quantification of architecture [27] and biomass-related traits
[30], photosynthetic performance [32], water, light, and
nutrient use efficiency, respectively [26,31], content of biolo-
gically active substances [20,33,34] and water [35], etc. High
correlations between the digital RGB determined of shoot or
leaf area and the shoot fresh/dry biomass weights, respec-
tively, were reported in many plants, including Arabidopsis,
tobacco, wheat, rice, and tomato [23,26,32]. RGB-based phe-
notyping also allows many morphometric features of the
plant to be evaluated, such as height, compactness, or iso-
tropy [36]. To reveal spatial heterogeneity of the photosyn-
thetic activity, chlorophyll fluorescence imaging can be used
[37]. Hyperspectral spectroscopy of plant reflectance has
become a highly valued technique for evaluating biologi-
cally active substances and water in tissues [33–35,38].

The high-throughput phenotyping PlantScreenTM plat-
form, installed in the Laboratory of Production Physiology and
Plant Ecophysiology of the AgroBioTech Research Centre at
the Slovak University of Agriculture in Nitra, enables the use

RGB, chlorophyll a fluorescence, and hyperspectral reflec-
tance spectroscopy sensors, in the quantitative description of
the structural and functional features of the phenotype of
plants grown in controlled environmental conditions. The
aim of this pilot study originating from this platform was
to demonstrate the utility of phenotyping installation in
describing drought-induced phenotypic changes in tomato
plants, as well as quantify the variability of the obtained
data during the entire experiment, and identify the magni-
tude of phenotypic plasticity by comparing changes in the
values of a total of 25 structural, functional, and chemo-
metric traits.

2 Material and methods

2.1 Plant material and cultivation

Tomato seeds (Solanum lycopersicum L.; cv. Gruzanski
zlatni) were sowed into plastic cultivation plate pots (6 ×

4 pots; filled with peat substrate TS2 (Klasmann-Deilmann,
Geeste, Germany). Germination of plants took place at
250 μmol m−2 s−1 light intensity and 14 h/10 h (day/night)
photoperiod, temperature 25°C/17°C (day/night), and air
humidity 60%. After plant emergence, plants were trans-
planted to 5-L plastic pots filled with TS2 substrate, and 40
pots were registered into the PlantScreenTM conveyor phe-
notyping platform (PSI, Drásov, Czech Republic). The phe-
notyping platform consists of cultivation space and units
containing optical sensors (two RGB, one chlorophyll a fluor-
escence, and two hyperspectral spectrometers); sensor con-
figuration, and the cultivation area with tomato plants, as
shown in Figure 1. Experimental trays (well-watered – WW
and water-stressed – WS, respectively) were kept in the
cultivation area of the platform for the completely rando-
mized design. For phenotyping, we used nine plants in the
WW experimental group and 15 plants in the WS group.
Plants were 48 days cultivated under fully regulated
environmental conditions, such as light intensity 1,000 μmol
m−2 s−1 (cool white light, dark red light, and far-red light at
the proportion of 80, 10, and 10% total light intensity, respec-
tively, measured with spectrophotometer SpectraPen mini,
PSI, Drásov, Czech Republic), 14 h/10 h (day/night) photo-
period, air temperature of 25°C/17°C (day/night), air humidity
of 40–53%, and ambient CO2 concentration (350–400 ppm).
The recorded parameters of the environmental conditions
during plant cultivation are shown in Figure 2. Water irriga-
tion was controlled gravimetrically (±2.0 g) using weighing
and irrigation station of phenotyping PlantScreenTM platform
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into 70% of full soil water capacity (SWC; reference weight
1,490 g). Plants watered in this protocol were referred to as
WW. After the acclimatization period (9 DAE) to environ-
mental conditions and the plant phase period of the third

fully developed leaves, the dehydration cycle of randomly
selected pots with tomato plants (WS) was initiated by water
withholding up to the level of 15% SWC. SWC was calculated
by the equation [39]:

Figure 1: (a) Sensors configuration in high-throughput phenotyping platform PlantScreenTM, (b) tomato plants on conveyor belts in the cultivation
area phenotyping platform, and (c) detail photography of tomato plant.

Figure 2:Microclimatic parameter during cultivation of tomato plants: (a) one-day record of intensity of irradiance (PPFD), (b) spectral characteristics
of irradiance, (c) air temperature (Temp) and relative humidity (RH) during the day, (d) course intensity of irradiance (PPFD), (e) air temperature
(Temp), and (f) air vapor pressure deficit (VPD) during the experiment. DAS – day after sowing.
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WW DW

DW

where WW is the wet weight of the substrate, and DW is
the dry weight of the substrate after drying in an oven at
105°C until constant weight. Soil WW was determined 10 h
after full watering of substrate in pots (100% field water
capacity) [39].

2.2 Data acquisition

Images collection was programmed using PlantScreenTM

Scheduler software (PSI, Drásov, Czech Republic). For RGB
imaging, plants were imaged each second day using both
RGB sensors in top and side configuration. The technical
specifications of the sensors used are described in Table 1.
Briefly, color images (5 MPx) were recorded from the top
view (top of the plant) and scanned from the side at two
angles (0 and 90 degrees, respectively). Recorded images
(resolution 2,560 × 1,920 Px) were stored in the database
and processed using PlantScreenTM Data Analyzer (PSI,
Drásov, Czech Republic).

The method of quantifying chlorophyll a fluorescence
has become an important tool that allows the evaluation of
the performance of primary photosynthetic reactions in dif-
ferent growing environmental conditions. Thus, the photo-
synthetic performance of plants was analyzed (every fourth
day on average) by chlorophyll a fluorescence (CF) imaging
using FluorCam FC-800MF fluorometer (technical specifica-
tions are shown in Table 1) working at pulse amplitude
mode (PSI, Drásov, Czech Republic). Plants were loaded
into the CF unit during the night (starting at 10:00 pm) in
a dark-adapted state of photosystem II. For the calculation of
photosynthetic performance, the protocol of quenching ana-
lysis with the intensity of 600 μmolm−2 s−1 cool white actinic
light was used.

VNIR (visible and near-infrared region) and SWIR
(short-wavelength infrared region) spectrometer (HC) at

top view configuration were used for hyperspectral reflec-
tance analysis. Technical specifications for both sensors
are shown in Table 1. First, dark and light (Spectralon
plate) calibration images were performed before HC ima-
ging. Both HC imaging spectrometers (VNIR and SWIR)
produce a 2D spatial array of vectors that represent the
spectrum at each pixel location of the image. The resulting
3D datacubes of the image contain two spatial dimensions
(axes x and y) and one spectral dimension (z-axis). Plants
were loaded into the HC unit and illuminated by one
halogen tube (600W, color temperature of 2,600 K). VNIR
and SWIR sensors perform images in line with scanner
operation.

2.3 Data pre-processing and image
extraction

For RGB, PlantScreenTM Data Analyzer software (PSI, Drásov,
Czech Republic) performed three steps to plant image extraction
and subsequent calculation of plant growth and morpholo-
gical parameters. In the first step of RGB image pre-proces-
sing, the correction of barrel distortion was automatically
performed, followed by background subtraction to remove
non-plant pixels, plant mask preparation by image binariza-
tion, and finally, RGB reconstruction of the image in native
and artificial colors. The second step of data processing
included the calculation of plant area and morphological
parameters. Raw CF image pre-processing was automatically
performed consisting of plant mask application, background
subtraction, and finally pixel-by-pixel CF parameter cal-
culation was done. Acquired hyperspectral data from
both VNIR and SWIR sensors were processed using pixel-
by-pixel analysis, featuring radiometric and dark noise cali-
bration, background subtraction, and automated vegetation
indices computation. Plant mask during HC image pre-pro-
cessing for each image was constructed from VNIR datacube
using math formula:

Table 1: Technical specifications of sensors for RGB, chlorophyll a fluorescence (CF), and hyperspectral reflectance (HC) imaging

RGB sensor CF sensor HC sensor VNIR HC sensor SWIR

Sensor technology CMOS color 1/2″ 1/2″, mono Silicon InGaAs
Resolution 5.00 MPx
Effective pixels 2,560 × 1,920 720 × 560 640 × 480 640 × 480
Pixel size 2.2 μm 8.6 × 8.3 μm 25 µm 25 µm
Interface GigE GigE GigE GigE
Spectral range 340–900 nm 900–1,700 nm
Image frequency 50 fps 50 fps 50 fps
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[ ( ) ( )]= × × − − × −R R R RPlant pixel 1.2 2.5 1.3740 672 740 556

where R740, R672, and R556 are values of reflectance inten-
sities at 740, 672, and 556 nm.

Calculations and brief descriptions of individual calcu-
lated parameters (geometrical, structural, and chemometric)
are shown in Table 2.

Evapotranspiration rate (ET; g H2O dm−2 day−1) was
calculated for each plant and each day according to equa-
tion [40]:

( )
=

−
×

A t
ET

WA WB 1
i

k

where WA is the pot weight before watering at day ti, WB is
the pot weight after day ti−1, A is the aboveground plant
area at ti and ti is the day of interest and ti−1 is the pre-
vious day.

2.4 Statistical analysis

Plant structural and functional traits data extracted from
images were analyzed using Statistica software version 10
(StatSoft Inc., Tulsa, OK, USA), the statgenHTP Package and

Table 2: Parameter description of structural, functional, and chemometrics plant traits used in this study

Parameter Description Calculation

Structural parameters
A Aboveground plant area, calculated as the integral volume of plant

pixels in three image projections (top view and side view at 0, and
90 degrees

( ) ( ) ( )= + +A A A Atop 2 side_0 2 side_90 2

Ptop Length of the plant perimeter top view —

Pside Length of the plant perimeter side view —

Comptop Compactness top view = A AComp /convex hulltop top top

Compside Compactness side view = A AComp /convex hullside side side

Roundtop Roundness · ·= π A PRound 4 /top 2 2

Round-2top Roundness-2 · ·= π A PRound 2 4 / convex hulltop 2 2

Isotop Isotropy · ·= π A PIso 4 / polygontop 2 2

Ecctop Eccentricity
·=
⎧
⎨
⎩

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥
⎫
⎬
⎭

L L LEcc 2 /2 – /2top major

2

minor

2

major

RMS Rotational mass symmetry ( ) ( )= +RMS Area Area / Area – Areacircle convex hull circle convex hull

SOL Slenderness of leaves = P ASOL skeleton /2 top

H Height of bounding box enveloping plant —

W Width of bounding box enveloping plant —

Functional photosynthetic parameters
Fo Minimal intensity of chlorophyll a fluorescence at dark —

Fm Maximal intensity of chlorophyll a fluorescence at dark —

Fp Peak fluorescence during initial phase of Kautsky effect —

Fs Instantaneous fluorescence (steady-state) at light —

F´m Maximal intensity of chlorophyll a fluorescence at light —

Fv/Fm Maximal photochemical efficiency of PSII at dark ( )=Fv/Fm
Fm –Fo

Fm

ΔF/F′m Actual photochemical efficiency of PSII at light ( )∆ =F /F′m
F ′ m – Fs

F ′ m

NPQ Non-photochemical quenching of fluorescence ( )=NPQ Fm – F′m /F′m

Rfd Relative fluorescence decline ( )=Rfd Fp – Fs /Fs

Chemometrics VNIR and SWIR parameters
NDVI Normalized difference vegetation index = +R R R RNDVI – /800 670 800 670

MCARI-1 Modified chlorophyll absorption ratio index 1 ·[ ·( ) ·( )]= R R R RMCARI 1 1.2 2.5 – 1.3 –800 670 800 550

CHLa Chlorophyll a reflectance index ·[( ) ]= R RCHLa 1/ – 1776 673

ARI-1 Anthocyanin reflectance index 1 = RARI 1 1/ –
R

550
1

700

CRI-1 Carotenoid reflectance index 1 = RCRI 1 1/ –
R

510
1

550

Water-1 Water reflectance index 1 = R RWater 1 /1,440 960
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Outlier Detection Methods (both from EPPN2020 project)
tools of R-Studio (Posit, PBC, Boston, USA). In the first
step, the results were analyzed with the Grubbs test, which
identifies outliers between individual biological replicates
in each genotype and treatment according to Poudel et al.
[41]. The threshold for outliers and extreme values was
done as 2·S.D using statgenHTP Package and Outlier Detec-
tion Methods. Subsequently, Laven’s and Cochran’s statis-
tical tests were used to evaluate data homogeneity and
distribution of normality using Statistica software. Statisti-
cally significant differences were subjected to analysis of
variance (ANOVA) at the significance level of 0.05 and then
to Tukey post-hoc test and indicated as p < 0.05*, 0.01**,
and 0.001***.

Correlation relationships between individual traits were
assessed by Pearson’s correlation coefficient (rP). The evalua-
tion of the degree of trait variability was calculated as the
coefficient of variability (C.V.; dimensionless unit) according
to the equation:

=
σ

μ
C.V.

where σ is the standard deviation and μ is the mean.
The magnitude of the phenotypic plasticity of an indi-

vidual trait (PhP) was calculated according to the equa-
tion [42]:

=
−

×
x x

x
PhP 100i

i i

i

WS WW

WW

where xiWW is the mean value of the individual trait in WW
plants and xiWS is the mean value of the individual trait in
WS plants.

3 Results and discussion

The realization of genetic information in the ontogenetic
program of the plant and the phenotype expression are
performed in direct connection and interaction with the
environment. A long-term goal of plant biologists and phy-
siologists is to study and interpret the structural and func-
tional dynamics of plant organisms using a non-invasive
imaging approach. Digital phenotyping is becoming a pop-
ular tool for the quantitative description of structural and
functional traits of plants, especially those related to bio-
mass production and stress tolerance. An essential part of
the quantitative description of the phenotype is the knowl-
edge of the microclimatic conditions of the environment in
which plant growth and development take place.

At the stage of the third fully developed tomato leaf (9
DAE), the dehydration cycle was started by water with-
holding of soil substrate (Figure 3a). In well-watered (WW)
plants, the SWC (soil water content) level was maintained at
70%. In water-stressed (WS) plants, SWC was continuously
decreasing, and a level of 15% SWC was reached after 17
days of gradual substrate dehydration, corresponding to
a mean rate of 3.2% water loss. It is well documented in
the literature that slow and gradual dehydration of the
substrate allows plants to develop protective responses
against drought and increase the degree of drought resis-
tance [11,42].

Drought resistance has been identified as a “complex
trait” [43], and the most important resistance traits ensure
hydration and tissue turgor maintenance. In plants, turgor
pressure plays an essential role in critical processes such as
growth, development, mechanical support, signaling, organ
movement, flowering, and plant stress responses [44]. During
evolution, plants under selection pressure have developed
evolutionary strategies to cope with drought through pheno-
typic plasticity [45]. The observed stress-induced higher value
of phenotypic plasticity (PhP) leads to more significant differ-
ences in the expression of phenotype between WW and WS
plants. A total of 25 plant traits were quantified in this study
and divided into three classes: structural, functional, and
chemometrics (Table 3). It was identified that the area growth
rate of well-hydrated plants shows a typical sigmoidal course
(Figure 3b), and the aboveground plant area reached a level
of 22.96 dm2. As expected, drought causes a statistically sig-
nificant reduction in growth, with a visually observable phe-
notypic expression as early as 25 DAE (Figure 3c). The drought
significantly and negatively impacted the formation of the
vertical architecture of the plant (Table 3). Plant height (H),
compactness (Comptop), and slenderness of leaves (SOL) are
considered the most important geometrical parameters of the
vertical structure of plants, which sensitively reflect plant
growth disturbances and leaf area evolution under stressful
situations. The phenotypic expression of these traits is rela-
tively uniform between plant individuals growing in a given
environment (WW andWS), which is documented by the low
value of variability (C.V. from 0.04 to 0.15 dimensionless unit)
and the high value of partial η2 (Table 3). In this experiment,
it was observed that the phenotypic manifestation of traits
describing the geometry and vertical structure of adult
tomato plants is more complex than that of plant species
in juvenile stages of ontogenesis [46] and/or forming a small
number of leaves [47] or finally such plants that form a
rosette of leaves [36].

Using the precision weighing and irrigation station
of the PlantScreenTM phenotyping system, the rate of
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Figure 3: Dynamics of soil water content (SWC) (a) and growth of shoot area in well-watered (WW) and water-stressed (WS) tomato plants (b). DAE –
day after emergency. Point represented mean ± SD (n = 9–15). (c) Ontology of RGB imaging of WW and WS plants.

Table 3: Effect of well-watered (WW) and water-stressed (WS) conditions on structural, functional, and chemometrics traits

Parameter WW WS P partial η2 PhP

A (dm2) 22.96 ± 2.30 3.26 ± 0.21 *** 0.998 −85.80
Ptop (dm) 10.53 ± 3.72 3.98 ± 1.32 *** 0.925 −62.20
Pside (dm) 74.13 ± 8.52 46.09 ± 6.28 *** 0.802 −37.83
Comptop 0.606 ± 0.027 0.369 ± 0.030 *** 0.951 −39.11
Compside 0.653 ± 0.194 0.483 ± 0.040 * 0.306 −26.03
Roundtop 0.046 ± 0.007 0.031 ± 0.005 *** 0.638 −32.61
Round-2top 0.899 ± 0.042 0.813 ± 0.050 ** 0.490 −9.57
Isotop 0.258 ± 0.027 0.226 ± 0.022 * 0.243 −12.40
Ecctop 0.163 ± 0.037 0.536 ± 0.101 *** 0.865 228.83
RMS 0.390 ± 0.063 0.677 ± 0.085 *** 0.802 73.59
SOL 2262.86 ± 299.74 615.70 ± 77.86 *** 0.944 −72.79
H (dm) 5.28 ± 2.47 2.80 ± 0.36 ** 0.371 −46.97
W (dm) 4.86 ± 0.71 1.98 ± 0.10 *** 0.907 −59.26
Fo 119.49 ± 10.65 85.34 ± 5.85 *** 0.816 −28.58
Fm 651.77 ± 39.59 350.12 ± 48.01 *** 0.930 −46.28
Fv/Fm 0.833 ± 0.014 0.780 ± 0.018 *** 0.754 −6.36
ΔF/F′m 0.226 ± 0.015 0.130 ± 0.022 *** 0.879 −42.48
NPQ 0.924 ± 0.101 0.590 ± 0.129 *** 0.701 −36.15
Rfd 1.388 ± 0.195 0.798 ± 0.190 *** 0.730 −42.51
Water-1 0.326 ± 0.038 0.870 ± 0.078 *** 0.957 166.87
NDVI 0.785 ± 0.030 0.690 ± 0.036 *** 0.695 −12.10
MCARI-1 0.622 ± 0.046 0.391 ± 0.078 *** 0.784 −37.14
CHLa 9.245 ± 0.871 14.078 ± 1.289 *** 0.845 52.28
ARI-1 0.718 ± 0.267 2.860 ± 0.488 *** 0.893 298.33
CRI-1 8.715 ± 1.032 15.732 ± 1.216 *** 0.916 80.52

P – probability by Tukey’s post-hoc test at 0.05*, 0.01**, and 0.001***; PhP – phenotypic plasticity.

Digital imaging of tomato plants under drought  7



evapotranspiration (ET) was calculated during the onto-
geny of tomato plants (Figure 4). ET was investigated in
more detail in an experiment at regular two-day intervals
to understand the causal significance of the physiological
and morphological responses of drought-stressed tomato
plants. At the beginning of ontogenesis, we determined
the rate of water evaporation from the plant and the soil
surface at the level of 147 ± 11 g H2O per dm2 leaf area and
day. During the growth of the plant’s leaf area, we observed
a significant decrease in ET (nearly 35% reduction) even in
WW, which can be attributed to the progressive formation
of the plant cuticle [48], and optimization of stomatal beha-
vior [49], or the reduction of water evaporation from the soil
surface due to the increase in plant size (Figure 3b and c). At
the time when the level of SWC in WS plants reached the
value of 15%, ET was at the level of 20 ± 5 g dm−2 day−1. A
similar ontogenetic variation of ET was observed in wheat
plants by a previous study [32], but unlike that, our simulta-
neous phenotyping of plants together with digital assess-
ment of leaf area allows the calculation of water loss per
unit leaf area. Despite the fact that image-based RGB pheno-
typing is intensively used in the description of the structural
features of the phenotypes of many plant species, as far as
we know, there are only a few comprehensive studies that
would comprehensively describe the anatomical traits of the
visual manifestation of plant morphology. In addition to the
water content in the soil, the vapor pressure deficits (VPD)
play an important role in shaping the anatomy of the tissues
and the morphology of the plant. As an example, Amitrano
et al. [50] use the combination of image-based phenotyping
with in-depth anatomical analysis in the study of lettuce
plant responses to drought and VPD.

The technique was and still is successfully used in basic
photosynthetic research, but it has also found applications
in screening in breeding [10,51]. The formation of functional

traits of plant photosynthetic performance during ontogen-
esis in WW and WS is shown in Figure 5. The minimal
(Fo) and maximal (Fm) chlorophyll a fluorescence intensity
during plant ontogeny increases slightly in WW. A generally
observed response to drought is a decrease in both Fo and
Fm, respectively. In our experiment, it was observed that
WS induced a statistically significant (p < 0.001) decrease in
Fo and Fm from day 16 of water stress, and Fo responds
faster and more sensitively to stress (Figure 5a and b). This
acclimation response is attributed to the induction of photo-
protective mechanisms and/or damage to PSII photosys-
tems [52].

The maximal PSII photochemical efficiency (Fv/Fm) is
a good indicator of plant responses to many stress situa-
tions [51]. However, Fv/Fm is relatively stable in many
plant species, including tomatoes, under moderate drought
conditions, with a decrease only under severe drought [53,54].
The maximal photochemical efficiency of PSII (Fv/Fm) was
observed to increase slightly above the value of 0.830 in the
first phase of plant ontogenesis (Figure 5c). In WS plants,
a decrease in the value of Fv/Fm was observed only from
the twenty-first day of dehydration, when the plants had
already been grown for 10 days at 15% SWC. At the end of
the dehydration cycle, Fv/Fm dropped significantly (p < 0.001)
to 0.780 ± 0.018 (Table 3).

Since the method of whole-surface imaging of chloro-
phyll a fluorescence documents the mean level of Fv/Fm
from the whole plant [24], we confirmed the heterogene-
ities between the individual leaves. Figure 5g also docu-
ments this fact. A much more sensitive parameter that
describes the primary reactions of photosynthesis under
stress is the actual PSII photochemical efficiency (ΔF/F′m).
In WW, ΔF/F′m increased during plant ontogeny (Figure
5d). A drought-induced decrease in ΔF/F′m was observed
in WS plants already on the 5th day of dehydration (p <

0.001). Parameter ΔF/F′m reflects both the maximum photo-
chemical efficiency of PSII at actinic light and the efficiency
of thermal dissipation of excitation energy by non-photoche-
mical processes (NPQ). The highest level of non-photoche-
mical quenching of chlorophyll fluorescence (NPQ) was
observed in juvenile tomato plants (1.40 ± 0.10). During onto-
genesis, NPQ decreased more in plants affected by water
stress [0.924 ± 0.101 in WW vs 0.590 ± 0.129 in WS; p <

0.001 (Table 3)]. A significant dehydration-induced decrease
in NPQ level (p < 0.001) of the whole plant compared to WW
appeared on the eleventh day of drought (Figure 5e). A
surprising finding is that the formation of the plant’s assim-
ilation surface was accompanied by a decrease in the NPQ
value during ontogenesis. It nicely illustrates that imaging of
NPQ during ontogenesis allows the efficient visualization of
physiological processes and activities, including related

Figure 4: Evapotranspiration rate (ET; g dm−2 day−1) in well-watered
(WW) and water-stressed (WS) tomato plants. DAE – day after emer-
gency. Point represented mean ± SD (n = 9–15).
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heterogeneities. Higher activity of thermal dissipation of
excitation energy was observed in ontogenetically younger
(upper) leaves than in ontogenetically older (lower) leaves.
Thus, our results efficiently contribute to the knowledge of
plant species-dependent ontogenetic changes in NPQ that
are well documented in the literature [55,56].

Parameter Rfd (relative fluorescence decline) is directly
correlated with the net CO2 assimilation rate of leaves of
many plants affected by different environmental conditions
[57]. Like the NPQ parameter, the highest level of the Rfd
was observed in juvenile tomato plants (2.016 ± 0.138).
During ontogeny, the total Rfd level of the whole plant
decreased rapidly (up to 22 DAE) and maintained a stable
level in both WW and WS plants. Finally, water stress
resulted in a significant decrease (p < 0.001) in Rfd, with
higher activity in younger than older leaves (Figure 5f
and g).

Hyperspectral reflectance is an excellent tool for quan-
tifying changes in the content of biologically significant sub-
stances in plant leaves during stress situations [12,33,35].
Non-destructive chemometrics using VNIR and SWIR hyper-
spectral sensors installed in PlantScreenTM platform allowed
us to evaluate the drought-induced kinetics of changes in
water content (Water-1), assimilation pigments (NDVI,
MCARI-1), chlorophyll a (CHLa), carotenoids (CRI-1), and
anthocyanins (ARI-1) in tomato leaves (Table 3 and Figure 6).
As drought increases, the water-1 parameter increases and
is strongly (negatively; rP = −0.84; p < 0.001) correlated with
SWC (Figures 6a and 7b), and low variability (C.V.) was
observed within both the treatment (Figure 7a). These
results show that using the SWIR sensor for water content
assessment is more accurate than using VNIR indices [35].
The indices quantifying the content of assimilation pig-
ments (NDVI and MCARI-1) showed the lowest phenotypic

Figure 5: Dynamic light energy conversion into photochemical and non-photochemical processes in tomato plants growing in well-watered (WW) and
water-stressed (WS) conditions. (a) minimal intensity of fluorescence (Fo), (b) maximal intensity of fluorescence (Fm), (c) maximal efficiency of PSII
photochemistry at dark (Fv/Fm), (d) actual efficiency of PSII photochemistry at light (ΔF/F′m), (e) non-photochemical quenching of fluorescence (NPQ),
(f) relative fluorescence decrease (Rfd) and (g) heterogeneity of photosynthesis functionality expressed by full-screen imaging of chlorophyll a
fluorescence parameter. Parameters were calculated as the mean value of all pixels from plant chlorophyll fluorescence imaging. DAE – day after
emergency. Point represented mean ± SD (n = 9–15). Statistical differences are determined by Tukey post-hoc test and indicated as p < 0.05*,
0.01**, 0.001***.
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plasticity from the chemometric parameters. On the other
hand, drought stress induced an almost threefold increase
in the concentration of anthocyanins (ARI-1) in tomato
plants.

A significant benefit of using modern automatic phe-
notyping platforms evaluating many morphological and
physiological parameters is the quantification of the phe-
notypic plasticity (PhP) of the trait (Table 3). The PhP is
characterized by the ability of an organism to undergo
reversible morphological, biochemical, or physiological
changes in response to environmental conditions [45]. In
this study, some geometric traits show relatively low levels
of drought-induced PhP (especially Isotop, Round-2top, and
Compside) ranging from −9.57 to −26.03; these are still
higher values than those reported in earlier literature
[46]. A negative value of the calculated PhP means a
reduced level of the given trait due to drought. It was

observed in our experiment that in contrast to geometrical
traits, functional and chemometrics traits have the poten-
tial to exhibit rapid plasticity in WS conditions. This mainly
concerns drought-induced changes in the contents of chlor-
ophyll a (CHLa), carotenoids (CRI-1), and anthocyanins
(ARI-1, identified PhP values from 50 to 300), which is given
by both strength and duration of stress. Evaluation of the
phenotypic plasticity of morphological and physiological
traits has applications in breeding strategies for creating
new biological material for tomatoes tolerant to drought
[11,49,58]. Thus, in breeding programs, the selection of gen-
otypes based on traits with lower phenotypic plasticity
could help to increase production performance under
drought conditions.

Finally, the sensitivity of assessing plant responses to
drought through digital phenotyping was supported by
correlation analysis (Figure 7b), which confirmed a very

Figure 6: Heterogeneity of functional parameters of chemometrics expressed by full-screen imaging of hyperspectral SWIR and VNIR reflectance
parameters well-watered (WW) and water-stressed (WS) tomato plants at terminal stages of dehydration cycle (DAS = 47). (a) Water-1 index, (b)
normalized difference vegetation index (NDVI), (c) modified chlorophyll absorbance ratio index (MCARI-1), (d) chlorophyll an index (CHLa), (e)
anthocyanin reflectance index (ARI-1), (f) carotenoid reflectance index (CRI), and (g) heterogeneity of chemometrics values expressed by full-screen
imaging of SWIR and VNIR hyperspectral reflectance indices. Parameters were calculated as the mean value of all pixels from plant chlorophyll
fluorescence imaging. DAE – day after emergency. Point represented mean ± SD (n = 9–15). Statistical differences are determined by Tukey post-hoc
test and indicated as p < 0.05*, 0.01**, and 0.001***.
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close dependence of ET, A, and plant water content (Water-1
index) on SWC (rP > 0.80; p < 0.001). Other morphological
traits (Comp, Round, RMS, Ecc, and Iso) were less correlated
with water content (rP = 0.20–0.40), except plant height (rP =
0.63; p < 0.001). Functional traits of photosynthetic efficiency
are characterized by high dependence on SWC (rP = 0.50–0.73;
p < 0.001), except Fv/Fm (rP = 0.17).

4 Conclusions

Modern state-of-the-art high-throughput plant phenotyping
(HTTP) is a technology that enables the simultaneous

evaluation of a large number of traits. As demonstrated by
the presented case study of tomato plants, the use of digital
methods of plant imaging and calculation of structural and
functional parameters has several advantages compared
to classical methods of describing the phenotype. Digital
imaging of optical signals from a plant is non-invasive and
non-destructive and allows the evaluation of the plant’s
phenotype throughout its ontogeny. The digital imaging
system made it possible to create databases of morpho-phy-
siological features that are accessible for re-analysis and
information sharing. Also, digital imaging allows several
independent parameters to be calculated at once, increasing
the overall predictive value of the phenotype realized
in a particular environment. The study documented the

Figure 7: (a) Heatmap of coefficient of variability for individual plants phenotype traits affected by well-watered (WW) and water-stressed (WS)
conditions. (b) Heatmap of Pearson correlation coefficient (rP).
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statistically significant complexity of the morphological and
physiological responses of tomato plants affected by water
stress. Plant geometric traits, especially Isotop, Round-2top,
and Compside, showed a relatively low level of drought-
induced phenotypic plasticity (PhP). On the other hand,
functional and chemometric characteristics (especially para-
meters ΔF/F′m, Rfd, Water-1, and ARI-1) showed the potential
to exhibit rapid plasticity in WS conditions. Similarly, the
experiments in tomato confirmed the reliability and repeat-
ability of non-destructive HTTP quantification of individual
morpho-physiological traits within individual repetitions
(C.V. up to 0.20), especially under WS conditions. In conclu-
sion, the quantification of the variability of individual traits
in well-watered (WW) and water-stressed (WS) plants, as
well as the phenotypic plasticity of traits and correlation
analysis, point to the enormous potential of using digital
phenotyping of plants affected by stress situations.
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