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Abstract: Dimethachlor is an herbicide used for oilseed rape protection. Previous studies have
demonstrated its high mobility in the soil, which could lead to water contamination. This research
aimed to determine the occurrence of dimethachlor and its metabolites (dimethachlor ethanesulfonic
acid ESA and dimethachlor oxalamic acid OA) in surface water using a recently developed analytical
method. This article is one of the first to document dimethachlor and its metabolites’ presence in
surface water samples. The samples were collected from the Danube river and Tisza river. The
quantitative determination of dimethachlor and its metabolites in the obtained extracts was done
by high-performance liquid chromatography. Descriptive statistical methods, including correlation
analysis, cluster analysis, and principal component analyses, were utilized to analyze method
validation experimental results. In addition, the artificial neural network (ANN) model was applied
as an optimization tool. The developed ANN model adequately predicted observed variables,
suggesting the optimum results were obtained at a pH value 7, spike value 1, and injection volume
equal to 0.5 µL. The average concentrations in Danube River samples were 1.51 µg/L for OA 0.01 µg/L
for ESA, and 0.63 µg/L for DMC, while the average concentrations of chloroacetanilide herbicides
detected in Tisza River samples were 1.43 µg/L for OA, 0.08 µg/L for ESA and 1.82 µg/L for DMC.

Keywords: dimethachlor; dimethachlor ethanesulfonic acid; dimethachlor oxalic acid; pesticide;
herbicide; surface water; chemometrics

1. Introduction

The available resources reduce as a consequence of the intense energy consumption,
and the significant issues caused by global climate change substantially impact the en-
vironment and pose a hazard to human health and safety; therefore, proper sustainable
energy development management to strengthen the usage of renewable energy sources is
needed [1–4].

Biomass may recreate an essential role in achieving these goals (especially as biogas,
bioethanol, and biodiesel) since it is an alternative, renewable, and ecologically benign
energy source and can replace energy and heat production from burning fossil fuels [5–7].
The latest branch of agriculture, named energy agriculture, is dynamically developing with
the scope of using agricultural products for biofuel production [8]. Diverse consumable
oils, including sunflower, palm, and soybean oil, delivered about 95 % of biodiesel globally,
while oilseed rape is mostly used (82.8%) for biodiesel production in Europe, due to
cool, temperate conditions [9]. The European Union’s most significant producers of pure
biodiesel are Germany, France, Spain, and Italy. One hectare of oilseed rape provides
sufficient grain to deliver 1090 biodiesel fuel liters [10]. To produce a desirable amount of
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oilseed rape, adequate treatment is required, including applying herbicides and pesticides
to improve crop yields; however, the expansion in their application is highly correlated to
adverse impacts on the environment and, as a consequence, on human health [11,12].

In the Danube and Tisza Basin countries, agricultural fields are treated with chloroac-
etanilide herbicide dimethachlor, leading to soil and water contamination due to agricul-
tural runoff [13,14]. Herbicide dimethachlor is widely used in oilseed rape protection, with
approximately 1.5 kg per hectare once every three years [15,16]. Dimethachlor belongs in is
a group of medium-toxic pesticides with an average lethal dose (LD50) of 1.600 mg/kg;
it is also very harmful to algae and fish, causing long-term adverse effects in the aquatic
environment [17,18]. In the Republic of Serbia and its bordering countries, plant protection
products containing dimethachlor are utilized [19]. Because of its high solubility in water
and low adsorption coefficient in soil, as it is shown in the survey conducted within the
project “Mobility of herbicides in Vojvodina soils”, it would be easily leaked to the surface
water and groundwater, which could be harmful to humans and to the environment [20].

Chloroacetanilide herbicides have been shown to degrade more rapidly in soil than
other herbicides, with half-lives from 15 to 30 days [21]. Considerable studies [22–25]
have reported the occurrence of chloroacetanilide metabolites in surface and groundwater,
often in similar or even higher concentrations than the parent compounds. Additionally,
chloroacetanilide herbicide degradates may be more stable than the parent compounds,
and may be present in the water and soil for a longer period of time [26]. Ethane sulfonic
acid (ESA) and oxalic acid (OA) derivatives of dimethachlor have been frequently detected
as the major transformation products of dimethachlor in surface and groundwater at
the same or even higher levels than their parent compound [24]. However, despite the
widespread use of dimethachlor, very little information is available about its concentrations
in surface water.

The objective of this study, therefore, was to determine dimethachlor residues (DMC)
and its metabolites: dimethachlor oxalamic acid (OA), dimethachlor ethane sulfonic acid
(ESA) in river water samples using a recently developed analytical method. The method
was optimized using a full factorial experimental plan (27 samples, with three parameters:
pH, spike, and injection volume and three levels). Descriptive statistical methods such
as: correlation analysis, cluster analysis, and principal component analysis were utilized
to analyze method validation experimental results. The artificial neural network (ANN)
model was applied as an optimization tool, while the sensitivity analysis was used to
examine the relative influence of the pH, spike, and injection volume on DMC, OA, and
ESA content. Furthermore, statistical methods were utilized to discriminate twenty water
samples, ten from the Tisza and ten from the Danube rivers. The geographical distributions
of OA, ESA, and DMC concentrations obtained from sampling sites were used to evaluate
the concentration of observed pesticides throughout the river’s stream using a partial
differential equation.

2. Materials and Methods
2.1. Standards

Analytical standard dimethachlor (99.4% purity) was purchased from Syngenta, Ger-
many. Analytical standards dimethachlor oxalic acid (99% purity, Cat.No CA12670400)
and dimethachlor ethanesulfonic acid (99% purity, Cat.No CA12670200) were purchased
from Dr. Ehrenstorfer (Augsburg, Germany). Ammonium acetate (p.a. > 97%) and formic
acid (p.a. ≥ 98%, Cat.No 64197) were purchased from Centrohem, Serbia. Acetonitrile
(HPLC grade, Cat.No 34851) and methanol (pure p.a., Cat.No 34966) were purchased from
Sigma-Aldrich, Germany.

HLB Solid phase columns-Oasis HLB Cartridge (3 cc, 60 mg) Cat No WAT094226 were
purchased from Waters Corporation, and Solid Phase Columns-Supelclean™ EN-VI-Carb™
SPE Tube Cat No 57088 (bed wt. 250 mg, volume 3 mL) were purchased from Supelco
(Bellefonte, PA, USA).
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2.2. Sampling

Ten sampling sites were selected in the Tisza River, and ten sampling sites were also
selected in the Danube River. Locations of sampling sites in Tisza River were: Novi Bečej,
Bečej, Bačko Petrovo Selo, Mol, Ada, Senta, Sanad, Novi Kneževac, Kanjiža, and Martonoš,
and in Danube River were: Sremska Kamenica, Novi Sad, Futog, Begeč, Čelarevo, Bačka
Palanka, Bačko Novo Selo, Bogojevo, Apatin, and Bezdan. Samples were taken from the
Danube River and Tisza River, while both rivers pass through agricultural areas where
dimethachlor is used for plant protection.

The volumes of 250 mL water were collected in glass bottles from each sampling site
with three replications. After filling with water, the bottles were sealed with PTFE-lined
screw caps. During method development, 25 to 30 mg of ammonium chloride was added
to each 250-mL sample bottle. All samples were stored at 6 ◦C prior to analysis. Figure 1
and Table 1 show the sampling sites’ locations and GPS coordinates.

Figure 1. Location of sampling sites in the Tisza River (samples 1–10) and Danube River
(samples 11–20).
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Table 1. GPS Coordinates of sampling sites.

Tisza River Danube River

No. Sample Site
Locations Coordinates No. Sample Site

Locations Coordinates

1 Novi Bečej 45◦ 35′56” N
20◦ 07′ 95” E 11 Sremska Kamenica 45◦ 13′ 47” N

19◦ 5′ 21” E

2 Bečej 45◦ 36′ 4” N
20◦ 03′ 319” E 12 Novi Sad 45◦ 14′ 68” N

19◦ 51′ 38” E

3 Bačko Petrovo Selo 45◦ 42′ 78” N
20◦ 5′ 55” E 13 Futog 45◦ 13′ 94” N

19◦ 41′ 91” E

4 Mol 45◦ 45′ 78” N
20◦ 8′ 74” E 14 Begeč 45◦ 13′ 22” N

19◦ 37′ 02” E

5 Ada 45◦ 47′ 62” N
20◦ 8′ 72” E 15 Čelarevo 45◦ 15′ 35” N

19◦ 31′ 854” E

6 Senta 45◦ 55′ 63” N
20◦ 5′ 88” E 16 Bačka Palanka 45◦ 14′ 05” N

19◦ 22′ 98” E

7 Sanad 45◦ 58′ 321” N
20◦ 5′ 708” E 17 Bačko Novo Selo 45◦ 17′ 139” N

19◦ 08′ 25” E

8 Novi Kneževac 46◦ 2′ 926” N
20◦ 5′ 304” E 18 Bogojevo 45◦ 31′ 81” N

19◦ 4′ 72” E

9 Kanjiža 46◦ 4′ 173” N
20◦ 3′ 94” E 19 Apatin 45◦ 40′ 501” N

18◦ 58’ 15” E

10 Martonoš 46◦ 7′ 08” N
20◦ 4′ 62” E 20 Bezdan 45◦ 50′ 97” N

18◦ 51′ 57” E

2.3. Analytical Techniques

The analytical procedure for DMC, OA, and ESA uses solid phase extraction combining
OASIS HLB and EnviCarb SPE columns and the analysis is complete with high-performance
liquid chromatography-diode array detection. The collected samples from rivers were
prefiltered on filters to eliminate particulate matter and acidified with sulfuric acid to pH 2.

Prior to the extraction, columns had been conditioned with 20 mL of 10 mM ammo-
nium acetate/methanol under vacuum, followed by rinsing with 30 mL of deionized water.
The sample was mixed well and allowed to percolate through columns at a flow rate of
10 mL/min under a vacuum.

After the samples were passed through the columns, they were rinsed with 5 mL of
deionized water and then dried with air for 3 min.

The analytes were eluted from the columns with 10 mL of 10 mM ammonium ac-
etate/methanol at a low vacuum (5 mL/min). The extracts were evaporated to dryness
under a gentle stream of nitrogen in a heated water bath (60–70 ◦C) to remove all the
ammonium acetate/methanol. The mobile phase (mixture of acetonitrile/water + 1 mL
of methane acid in the ratio of 70/30 vol %) was added to the collection vial to bring the
volume to 1 mL. After that, extracts were transferred to an autosampler vial [27].

2.4. High-Performance Liquid Chromatographic Conditions

Analysis of the final fraction was accomplished using Agilent HPLC 1220 Infinity LC
with an autosampler, a vacuum degasser, a dual gradient pump, and a diode array detector
(DAD). Separation was carried out isothermally at room temperature of 25 ◦C in Aqua
C18 125A column (250 × 2.0 mm internal diameter, 5 µm particle size) from Phenomenex
(Cat.No 00G-4299-B0). The mobile phase was the mixture of acetonitrile/water + 1 mL of
formic acid in the ratio of 70/30 vol %. The flow rate was 0.3 mL/min, and the average
system pressure was 600 bar. The chromatographic conditions were as follows: the injection
volume was 20 µL, the detection was performed at 200 nm and the time of analysis was
7 min. The average retention times were: 4.159 min for DMC, 3.565 min for ESA and
3.011 min for OA. The limit of detection (LOD) is based on three times the standard
deviation of the baseline noise.
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2.5. Statistical Analysis

The experimental data were statistically analyzed with the multi-variable mathe-
matical methods: descriptive statistics (descriptive statistics), principal component anal-
ysis (principal components analysis—PCA), cluster analysis, Artificial Neural Network
modeling-ANN, and global sensitivity analysis by applying StatSoft Statistica 10.0® soft-
ware. The color plot diagram was designed with R software v.4.0.3 (64-bit version) with the
“circle” method, upper type.

2.5.1. ANN Modeling

The ANN model with a high potential for nonlinear function estimation was designed
using a multi-layer perceptron model (MLP), with input, hidden, and output layers [28].
Prior to the ANN model building, input and output data need to be normalized to improve
the result of the ANN [29]. Throughout the ANN building, input data are frequently
inserted in the network [30,31]. The training process of the network was performed as
previously described by Vojnov et al. [32].

In the designed ANN model, the weight coefficients and biases connected to the
hidden and output layers are displayed in the form of matrices and vectors W1 and B1, and
W2 and B2, each. The following formula reveals the neural network model:

Y = f1(W2 · f2(W1 · X + B1) + B2 (1)

where Y is the outputs matrix, f 1 and f 2 are the hidden and output layers transfer functions,
accordingly, and X is the matrix of inputs [33].

The weight coefficients W1 and W2 were calculated throughout the learning cycle,
while continuously introducing the elements, using an optimization method to minimize
the deviation between the data and the model [34,35]. The ANN model was developed to
foresee and optimize the parameters: DMC, ESA, and OA content, according to: pH, spike,
and injection volume.

2.5.2. Global Sensitivity Analysis

Yoon’s global sensitivity equation for the obtained ANN model was exploited to
estimate the relative impact of the input parameters (pH, spike, and injection volume) on
output variables (DMC, ESA, and OA), depending on the designed ANN model weight
coefficients [36]:

RIij(%) =
∑n

k=0(wik · wkj)

∑m
i=0 |∑n

k=0(wik · wkj)|
· 100% (2)

where: w—weight coefficient in ANN model, i—input variable, j—output variable, k—
hidden neuron, n—number of hidden neurons, m—number of inputs.

2.5.3. Error Analysis

The developed ANN model was validated by using the coefficient of determination
(r2), reduced chi-square (χ2), mean bias error (MBE), root mean square error (RMSE), and
mean percentage error (MPE), using the following equations [37]:

χ2 =
∑N

i=1 (xexp,i − xpre,i)
2

N − n
(3)

RMSE =

[
1
N
·

N

∑
i=1

(xpre,i − xexp,i)
2

]1/2

(4)

MBE =
1
N
·

N

∑
i=1

(xpre,i − xexp,i) (5)
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MPE =
100
N
·

N

∑
i=1

(∣∣xpre,i − xexp,i
∣∣

xexp,i

)
(6)

where xexp,i marks the experimental values and xpre,i presents value obtained by the model,
N and n are the number of observations and constants, respectively.

3. Results and Discussion
3.1. Method Validation

Prior detection of the pesticide residues in the Danube and the Tisza river samples,
the analytical method was optimized using a full factorial experimental plan (27 samples,
with three parameters: pH, spike, and injection volume and three levels), Table 2.

Table 2. The full factorial experimental design used for model optimization.

No pH Spike Injection Volume OA ESA DMC

1 2 0.5 0.5 13.466 0.000 6.796

2 2 0.5 1 17.036 7.289 8.760

3 2 0.5 1.5 47.373 32.294 9.077

4 2 1 0.5 31.838 35.448 21.454

5 2 1 1 47.789 47.034 24.372

6 2 1 1.5 92.682 75.841 25.254

7 2 1.5 0.5 0.000 2.918 2.198

8 2 1.5 1 23.386 17.694 4.866

9 2 1.5 1.5 80.327 49.917 5.825

10 4.5 0.5 0.5 54.191 27.038 15.012

11 4.5 0.5 1 25.058 11.761 12.456

12 4.5 0.5 1.5 22.084 13.555 7.587

13 4.5 1 0.5 71.137 56.358 30.079

14 4.5 1 1 57.161 43.878 26.995

15 4.5 1 1.5 67.904 49.604 23.196

16 4.5 1.5 0.5 34.317 14.978 9.712

17 4.5 1.5 1 32.775 6.361 7.397

18 4.5 1.5 1.5 57.629 14.994 3.562

19 7 0.5 0.5 81.937 78.524 23.114

20 7 0.5 1 22.043 38.353 15.094

21 7 0.5 1.5 0.000 16.891 5.358

22 7 1 0.5 100.534 99.423 37.131

23 7 1 1 55.350 61.722 29.203

24 7 1 1.5 31.913 43.630 20.046

25 7 1.5 0.5 65.080 49.581 16.987

26 7 1.5 1 30.102 17.057 9.589

27 7 1.5 1.5 22.479 2.152 0.679
OA—dimethachlor oxalic acid, ESA—dimethachlor ethanesulfonic acid and DMC—dimethachlor.

Figure 2 shows a color correlation diagram between all observed responses of tested
water samples. In Figure 2, the correlation coefficients between the two observed responses
are given by color and the size of the circle. The highest positive correlations were found
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between OA and ESA, OA, and DMC responses, and also between ESA and DMC. The pH
value showed a slight positive correlation with OA, ESA, and DMC responses.

Figure 2. Color correlation diagram between all tested responses. OA—dimethachlor oxalic acid,
ESA- dimethachlor ethanesulfonic acid and DMC- dimethachlor.

The cluster analysis dendrogram showed three main clusters, Figure 3. The first cluster
contained samples 1, 2, 27, 8, 12, 11, 16, 26, 17, 7, and 21. The second cluster included
samples 3, 10, 18, 9, 4, 24, 20, 5, 14, 15, 25, 13 and 23. Finally the third cluster contained only
samples 6, 19 and 22. The linkage distance (illustrated on the abscissa axis) between the
main clusters was evident (nearly 240).

Figure 3. Cluster analysis of the observed samples. OA—dimethachlor oxalic acid, ESA—dimethachlor
ethanesulfonic acid and DMC—dimethachlor.
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Based on the measured concentration shown in Table 2, PCA analysis was also per-
formed, Figure 4. The PCA biplot of the relationships among OA, ESA, and DMC content
and method characteristic parameters including spike, injection volume, and pH, revealed
that the first two principal components explained 97.37% of the total variance in the
observed parameters. According to the results of the PCA, the content of OA (which
contributed 48.85% of the total variance, based on correlations) showed a positive influence
on PC2. The content of DMC (50.15%) exerted a positive effect on the PC2 coordinate. On
the other hand, the content of ESA (36.49%) positively influenced the calculation of PC1,
(Figure 4).

Figure 4. The PCA biplot diagram of the relationships among OA, ESA, and DMC content and spike,
injection volume, and pH. OA—dimethachlor oxalic acid, ESA—dimethachlor ethanesulfonic acid
and DMC—dimethachlor.

3.1.1. ANN Model

The influence of analytical method parameters (pH, spike, and injection volume) on
the OA, ESA, and DMC content was investigated using the ANN model. The acquired
optimal neural network model demonstrated a good generalization capability for the
testing data and could accurately predict the output parameters of the water samples
for the observed input parameters. Based on ANN performance, the optimal number of
neurons in the hidden layer for the OA, ESA and DMC content was 9 (network MLP 3-9-3),
with a focus on achieving the high value of the coefficient of determination. r2 (overall
0.999 for ANN throughout the training period) and lower values of SOS (Table 3).
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Table 3. Artificial neural network model summary (performance and errors).

Network
Name

* Performance Error Training
Algorithm

Error
Function

Hidden
Activation

Output
Activation

Train. Test. Valid. Train. Test. Valid.

MLP
3-9-3 0.999 0.999 0.996 0.000 0.000 0.001 BFGS 109 SOS Tanh Identity

* Performance term describes the coefficients of determination, while error terms show a lack of data for the
ANN model.

The ANN performance defined as the goodness of fit among experimentally measured
and model-computed outputs (sum of r2 between measured and calculated OA, ESA,
and DMC parameters) throughout training steps, testing, and validation steps is given in
Table 4.

Table 4. Coefficients of determination (r2) between experimentally measured and ANN outputs,
during training, testing, and validation steps.

Cycle
ANN

OA ESA DMC

Train 0.9998 0.9998 0.9998

Test 0.9982 0.9996 0.9992

Validation 0.9986 0.9952 0.9953
OA—dimethachlor oxalic acid, ESA—dimethachlor ethanesulfonic acid and DMC—dimethachlor.

The obtained weights and biases obtained during ANN modeling are shown in
Tables 5 and 6, calculated according to Equation 1.

Table 5. The weight coefficients and biases W1 and B1.

Parameter 1 2 3 4 5 6 7 8 9

pH −1.068 −0.323 −0.083 0.230 −2.201 0.032 −0.884 0.167 1.270

Spike −1.149 0.633 −0.772 0.726 0.839 0.427 −1.067 0.395 1.346

Injection
volume −0.238 −0.263 −1.160 0.327 −0.076 0.410 0.021 1.377 −0.234

Bias −0.004 1.774 1.308 1.461 −0.355 −1.575 1.942 1.776 0.123

Table 6. The weight coefficients and biases W2 and B2.

Outputs 1 2 3 4 5 6 7 8 9 Bias

OA −0.859 0.895 −0.261 0.306 −0.398 0.943 0.315 0.263 0.541 0.706

ESA 0.812 0.215 0.202 0.866 0.509 0.889 1.207 0.976 −0.651 0.041

DMC −1.444 1.071 0.435 −1.391 1.047 1.060 −0.442 0.216 0.910 −0.174

OA—dimethachlor oxalamic acid, ESA—dimethachlor ethanesulfonic acid and DMC—dimethachlor.

ANN model was employed to predict experimental variables, quite satisfactorily, for a
wide range of the process parameters (as observed in Figure 5. where the experimentally
estimated and ANN model predicted values are displayed).
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Figure 5. Comparison between experimentally obtained and ANN model predicted values of:
(a) OA, (b) ESA, and (c) DMC. OA—dimethachlor oxalic acid, ESA—dimethachlor ethanesulfonic
acid and DMC—dimethachlor.

Figure 5 shows the experimentally estimated and ANN model predicted values,
indicating that the ANN model adequately predicted observed variables. Furthermore,
SOS conducted by the ANN model is of the exact order of magnitude as experimental
errors, while the predicted values were approaching the preferred values concerning the
ANN model r2 value.
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The Accuracy of the Models and the Residual Analysis

To numerically verify the displayed model accuracy coefficient of determination (r2),
reduced chi-square (χ2), mean bias error (MBE), root mean square error (RMSE), and mean
percentage error (MPE) were calculated, as shown in Table 7. In addition, the model feature
fit was examined, and the residual analysis results are presented in Table 8. The results
show that the ANN model had a minor lack of fit tests, which implies that the model
satisfactorily predicted the values of the analyzed parameters.

Table 7. The “goodness of fit” tests for the developed ANN model.

χ2 RMSE MBE MPE SSE AARD r2

OA 1.601 1.242 0.029 1.996 41.615 20.436 0.998

ESA 1.505 1.204 −0.311 4.397 36.509 25.356 0.998

DMC 0.348 0.579 −0.212 5.429 7.829 10.814 0.997

OA—dimethachlor oxalic acid, ESA—dimethachlor ethanesulfonic acid, and DMC—dimethachlor.

Table 8. The residual analysis for the developed ANN model.

Skew Kurt Mean StDev Var

0.654 3.548 0.029 1.265 1.601

−2.648 10.016 −0.311 1.185 1.404

−2.798 9.483 −0.212 0.549 0.301

Multi-Objective ANN Optimization

Optimization of the ANN results was performed analyzing the model presented
in Equation (1). One of the main aims of this research was to maximize the method
performance in the detection of OA, ESA, and DMC content using ANN model while
changing pH, spike and injection volume values. The required parameter range for the
optimization was used within the experimental variables domain. The calculated maximum
values for OA, ESA, and DMC were: 100.534 µg/dm3, 99.423 µg/dm3, and 37.131 µg/dm3,
respectively. The optimum results were obtained at a pH value 7, spike value 1, and
injection volume equal to 0.5 µL.

Global Sensitivity Analysis—Yoon’s Interpretation Method

The effects of analytical method parameters (pH, spike, injection volume) on the OA,
ESA, and DMC content determination were analyzed employing Yoon’s global sensitivity
equation corresponding to the weight coefficients of the obtained ANN model [35]. Fol-
lowing the global sensitivity analysis of a displayed ANN model, the graphical illustration
of Yoon’s interpretation method results was shown in Figure 6; based on Figure 6a–c,
pH positively influenced the content of OA (36.78%) and DMC (3.24), while the impact
on ESA was negative with an approximately relative importance of −54.89%. The spike
was the most influential parameter positively influencing OA and DMC content, with
an approximately relative importance of 86.88% and 44.98%, respectively. On the other
hand, the spike influence on ESA content was quite the opposite −19.84%. The positive
influence on the injection volume was observed for OA (18.23%) and ESA (25.26%) content,
Figure 6a,b, while at the same time negative influence was noticed for DMC (−10.10%)
content, Figure 6c.
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Figure 6. The relative importance of the content of pH, spike and volume on: (a) OA, (b) ESA, and
(c) DMC.

3.2. Detection of DMC, ESA and OA in Water from Sampling Sites in the Danube River and the
Tisza River

Table 9 contains a summary of the occurrence and concentrations of dimethachlor and
its metabolites OA and ESA in samples collected at ten sample sites in the Tisza River and
ten sample sites in the Danube River.
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Table 9. Summary of DMC, ESA and OA concentrations detected in water samples from sampling
sites in the Danube River and the Tisza River.

LOD OA = 0.036 µg/dm3 LOD ESA = 0.042 µg/dm3 LOD DMC = 0.045 µg/dm3

µg/dm3 rsd. % µg/dm3 rsd. % µg/dm3 rsd. %

Ti
sz

a

1 0.680 ± 1.178 a 0.96 >LOD 0.074 ± 0.078 a 0.063 >LOD 1.477 ± 0.666 abc 0.54 >LOD

2 1.485 ± 1.432 ab 1.17 >LOD 0.047 ± 0.052 a 0.043 >LOD 1.050 ± 0.677 ab 0.55 >LOD

3 0.662 ± 1.146 a 0.94 >LOD 0.009 ± 0.015 a 0.012 <LOD 1.081 ± 0.800 abc 0.65 >LOD

4 0.546 ± 0.946 a 0.77 >LOD 0.298 ± 0.320 a 0.261 >LOD 0.963 ± 0.774 a 0.63 >LOD

5 2.900 ± 1.238 ab 1.01 >LOD 0.012 ± 0.011 a 0.009 <LOD 3.605 ± 1.950 bc 1.59 >LOD

6 1.687 ± 0.432 ab 0.35 >LOD 0.004 ± 0.007 a 0.006 <LOD 2.578 ± 1.034 abc 0.84 >LOD

7 1.739 ± 1.506 ab 1.23 >LOD 0.007 ± 0.006 a 0.005 <LOD 3.691 ± 2.239 c 1.83 >LOD

8 4.592 ± 2.579 b 2.11 >LOD 26.027 ± 11.884 b 9.703 >LOD 2.135 ± 1.001 abc 0.82 >LOD

9 Bdl Bdl <LOD 0.043 ± 0.075 a 0.06 <LOD 0.599 ± 0.175 a 0.14 >LOD

10 Bdl Bdl <LOD Bdl Bdl <LOD 1.020 ± 0.311 ab 0.25 >LOD

Minimum
concentration 0.55 µg/dm3 0.004 µg/dm3 0.60 µg/dm3

Maximum
concentration 4.59 µg/dm3 0.3 µg/dm3 3.69 µg/dm3

Average value 1.43 µg/dm3 0.08 µg/dm3 1.82 µg/dm3

D
an

ub
e

11 Bdl Bdl <LOD Bdl Bdl <LOD 1.120 ± 0.090 abc 0.07 >LOD

12 Bdl Bdl <LOD Bdl Bdl <LOD 0.947 ± 0.245 a 0.20 >LOD

13 1.966 ± 0.302 ab 0.25 >LOD Bdl Bdl <LOD 0.823 ± 0.431 a 0.35 >LOD

14 0.818 ± 1.417 a 1.16 >LOD Bdl Bdl <LOD 0.915 ± 0.596 a 0.49 >LOD

15 2.562 ± 0.999 ab 0.82 >LOD Bdl Bdl <LOD 0.704 ± 0.223 a 0.18 >LOD

16 3.230 ± 1.713 ab 1.40 >LOD Bdl Bdl <LOD 0.702 ± 0.363 a 0.30 >LOD

17 1.705 ± 1.479 ab 1.21 >LOD Bdl Bdl <LOD 0.198 ± 0.103 a 0.08 >LOD

18 1.993 ± 0.729 ab 0.60 >LOD Bdl Bdl <LOD 0.213 ± 0.068 a 0.06 >LOD

19 1.272 ± 1.119 ab 0.91 >LOD Bdl Bdl <LOD 0.202 ± 0.134 a 0.11 >LOD

20 1.527 ± 1.593 ab 1.30 >LOD 0.005 ± 0.009 a 0.008 <LOD 0.461 ± 0.484 a 0.40 >LOD

Minimum
concentration 0.82 µg/dm3 0.01 µg/dm3 0.20 µg/dm3

Maximum
concentration 3.23 µg/dm3 0.01 µg/dm3 1.12 µg/dm3

Average value 1.51 µg/dm3 0.01 µg/dm3 0.63 µg/dm3

Different letters (a,b,c) printed the same column show significantly different means of observed data (p ≤ 0.05),
according to post hoc Tukey’s HSD test. According to correlation analysis. positive statistically significant
correlation was obtained between OA and ESA content. r = 0.603; p ≤ 0.0. Bdl—below detection limit,
rsd—relative standard deviation.

Dimethachlor was detected in 100 percent of the samples collected from the Danube
River and the Tisza River. Dimethachlor oxalic acid was detected in 80% of the samples
while dimethachlor ethanesulfonic acid was detected in only 20% of the samples. These find-
ings indicate that dimethachlor is extensively used in the Danube and Tisza Basin regions.
The ratio of metabolite concentrations to the parent compound concentration determines
the time of dimethachlor application. The maximum concentrations of chloroacetanilide
herbicides detected in Tisza River samples were at sampling site Novi Kneževac for OA
(4.59 µg/L), at sampling site Mol for ESA (0.3 µg/L), at sampling sites Ada (3.61 µg/L)
and Sanad (3.69 µg/L) for DMC. Dimethachlor OA was not detected at sampling sites
Kanjiža and Martonoš, and dimethachlor ESA was not detected at sampling site Martonoš.
The average concentrations of chloroacetanilide herbicides detected in Tisza River samples
were 1.43 µg/L for OA. 0.08 µg/L for ESA and 1.82 µg/L for DMC.
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The maximum detectable concentrations in Danube River samples were at sampling
site Bačka Palanka (3.23 µg/L) for OA and sampling site Sremska Kamenica (1.12 µg/L)
for DMC, while ESA was only detected at sampling site Bezdan (0.01 µg/L). Dimethachlor
OA was not detected in Sremska Kamenica and Novi Sad, while dimethachlor ranged
from 0.20 to 1.12 µg/L at all sampling sites in the Danube River. The average concentra-
tions in Danube River samples were 1.51 µg/L for OA 0.01 µg/L for ESA and 0.63 µg/L
for DMC. Detected dimethachlor concentrations were increased in the Danube from Bez-
dan (0.46 µg/L) to Sremska Kamenica (1.12 µg/L), which could be explained by using
dimethachlor on agricultural fields in Vojvodina and neighboring countries, primarily
Austria and Hungary [38]. Usually, the most frequently detected compounds in ricers
are atrazine, simazine, alachlor, metolachlor, and trifluralin of the herbicides, diazinon,
parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlo-
rine pesticides [39].

Pesticide pollution of surface waters is a global concern [40,41]. The Regulation
on Limit Values of Priority and Priority Hazardous Substances Polluting Surface Water
and Deadlines for Their Achievement (OG of RS. No. 24/2014) has not been applied to
dimethachlor and its metabolites but only on certain pesticides (Table 10).

Table 10. Limit values for individual pesticides in surface water [42].

Priority
Hazardous
Substance

Numeric
Identification

(CAS No.)

Average Annual
Concentration (µg/L)

Maximum
Permissible

Concentration (µg/L)

Atrazine 1912-24-9 0.6 2.0
Cyclodiene pesticides:

Aldrin
Dieldrin
Endrin
Isodrin

309-00-02
60-57-1
72-20-8

465-73-6

Sum
0.01 /

Total DDT / 0.025 /
Para-para DDT 50-29-3 0.01 /

Endosulfan 115-29-7 0.005 0.01
Simazine 122-34-9 1 4
Trifluralin 1582-09-8 0.03 /

The comparison of DMC, OA, and ESA average concentrations with the atrazine
concentration shown in Table 9 (comparison with atrazine was made considering the fact
that atrazine is a herbicide with high mobility in soil) has indicated that the DMC, OA, and
ESA average concentrations in Tisza River and Danube River samples did not exceed the
atrazine maximum permissible concentration (2.0 µg/L). Meanwhile, the DMC and OA
average concentrations in Tisza River and Danube River samples were above the atrazine
average annual concentration (0.6 µg/L).

Figure 7 shows dendrograms of cluster analysis for the tested water samples from the
Danube River and Tisza River sampling sites. The cluster analysis as the complete linkage
algorithm and City block (Manhattan) distances was used to measure proximity among the
water samples. City block distances (illustrated on the abscissa axis) are measured as the
average difference across the dimensions of the tested samples [43]. The linkage distance
(illustrated on the abscissa axis) between the main clusters was evident (nearly 32).
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Figure 7. Cluster analysis of DMC, ESA, and OA concentrations detected in water samples from
sampling sites in the Danube River and Tisza River.

Based on the measured concentration shown in Table 9, PCA analysis was performed,
Figure 8. The first two principal components explained 87.28% of the total variance in the
observed parameters. PCA analysis has shown a good grouping of water samples from
sampling sites in the Danube River and the Tisza River. The higher concentrations of these
compounds were observed in the Tisza River, rather than in the Danube River. Additionally,
a biplot graph of OA, ESA, and DMC concentrations was plotted for the locations shown
in Figure 8.

Figure 8. Biplot graph of DMC, ESA, and OA concentrations detected in water samples from sampling
sites the Danube River and the Tisza River. OA—dimethachlor oxalic acid, ESA—dimethachlor
ethanesulfonic acid and DMC—dimethachlor.

Based on data shown in Table 9, a computational fluid dynamics (CFD) analysis [44]
was conducted to show the geographical distribution of OA, ESA, and DMC concentrations
detected in water samples from sampling sites (Figure 9). This analysis was performed us-
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ing in-home developed software and river geographic profiles were drawn in the FreeCAD
program. The mesh for computational fluid dynamics (CFD) is also shown in Figure 9 and
was used as an analysis tool.

Figure 9. The geographical distribution of OA, ESA, and DMC concentrations detected in water
samples from sampling sites in Daunbe River and Tisza River. OA—dimethachlor oxalic acid,
ESA—dimethachlor ethanesulfonic acid and DMC—dimethachlor.

Dimethachlor was found in all samples collected from the Danube River and Tisza
River showing that this herbicide is used on agricultural fields. The higher concentrations
of dimethachlor in the Tisza River indicate that this herbicide was applied in the year of
the study.

Degradates (OA) were present in higher concentrations in the Danube River than the
parent compounds. This indicates that dimethachlor was also probably used in earlier
years, while chloroacetanilide herbicide degradates may be more stable than the parent
compounds and present in the water and soil for a longer period of time.

The presence of ESA in lower concentrations than OA (0.08 µg/L in Tisza River and
0.01 µg/L in Danube River) may be explained by better stability of OA in the aquatic
medium than ESA (data on the stability of dimethachlor metabolites were not found in the
available literature).

4. Conclusions

The presented results reviled that the analytical method described in this article is a
valid and accurate procedure for determining dimetachlor and their corresponding ESA
and OA degrades in water, and this article is one of the first to document dimethachlor and
its metabolites’ presence in surface water samples. The developed ANN model adequately
predicted observed variables. According to the developed artificial neural network model,
the optimum results were obtained at a pH value 7, spike value 1, and injection volume
equal to 0.5 µL.

Chemometric analysis have shown differences in concentrations of dimethachlor and
its metabolites between samples from the Danube River and Tisza River. These findings
indicate that the presence of metabolites depends on environmental conditions in which
degradation takes place. The results of this study revealed that the samples with higher
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concentrations of dimetachlor were detected in the Tisza River (average value of 1.82 µg/L).
In comparison, the average concentration of dimetachlor in the Danube River was 0.63 µg/L.
The results showed that degradates (OA) were present in higher concentrations in the
Danube River than they were in the parent compounds. Additionally, results indicate that
DMC and OA average concentrations in the Tisza River and Danube River samples were
above the atrazine average annual concentration. Therefore, it is necessary to harmonize
dimethachlor application dose so that dimethachlor and its metabolites concentrations in
water do not exceed limit values.

The obtained data highlight the importance of analyzing both parent pesticide com-
pounds and metabolites to understand their environmental fate and transport in the
hydrological system; this is undoubtedly essential in the case of herbicides when applied
in high doses.
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