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Abstract: The negative external effects caused by traffic growth have been recognized as the main
factors that degrade city quality of life. Therefore, research around the world is being conducted to
understand the impact of traffic better and find adequate measures to reduce the negative impact of
traffic growth. The central part of this research consists of mathematical models for simulating the
negative consequences of congestion and noise pollution. Four non-linear models for determining
noise levels as a function of traffic flow parameters (intensity and structure) in the urban environment
were developed. The non-linear models, including two artificial neural networks and two random
forest models, were developed according to the experimental measurements in Novi Sad, Serbia,
in 2019. These non-linear models showed high anticipation accuracy of the equivalent continuous
sound level (Laeq), with R2 values of 0.697, 0.703, 0.959 and 0.882, respectively. According to the
developed ANN models, global sensitivity analysis was performed, according to which the number
of buses at crossings was the most positively signed influential parameter in Laeq evaluation, while
the lowest Laeq value was reached during nighttime. The locations occupied by frequent traffic such
as Futoska and Temerinska positively influenced the Laeq value.

Keywords: noise; traffic volume; modeling; artificial neural network model; random forest

1. Introduction

According to the World Health Organization, noise significantly affects the psy-
chophysical health of the urban population [1]. On average, more than 50% of the popula-
tion in urban areas is exposed to non-stop levels of noise that exceed 55 dBA, whereas >15%
of the population is exposed to levels that exceed 65 dBA. In the European Union, around
94 million people in urban environments and around 31 million people outside urban
environments are endangered by traffic noise, of which approximately 112 million people
are exposed to elevated noise levels caused by road traffic [2,3]. Research indicates that
unwanted sound seriously affects cardiovascular, immunological, central, and vegetative
nervous and digestive systems [4–7]. The most severe health impacts from noise exposure
(morality, insomnia, cardiovascular) are experienced by a relatively small proportion of
the population, but a larger number of people experiences feelings of discomfort or stress.
Generally, noise effects can be direct, such as hearing loss, or indirect, such as distur-
bance of activities, sleep and communication. Physiological stress reactions are mainly
manifested through the autonomic nervous system (sympathetic nerve) and endocrine
system (pituitary gland, adrenal gland). Risk factors such as blood pressure, hypertension,
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arteriosclerosis and ischemic heart diseases, etc., are mainly related to negative noise en-
vironments [8]. Many risk factors related to noise exposure are still to be discovered but
the main health concern related to noise was, for a long time, occupational exposure and
hearing loss. The World Health Organization (World Health Organization, 1999, 2009, 2011)
determined that the equivalent 8-h exposure threshold for hearing loss includes impulse
sounds of 75 dBA. It is important to state that noise has a cumulative impact on many health
issues, including hearing lose, as people are exposed to noise throughout their lifetime and
hearing damage can build over time. Due to this cumulative impact over time, in many
cases, noise is not directly related with health issues and goes unnoticed. Negative effects
can also be found in the economic sphere through the negative impact on the real estate
market, which experiences a significant drop in given zones [9–11]. Based on the stated
facts, it can be concluded that road traffic is the dominant source of noise pollution [12,13].

Through this paper, we have defined a model which correlates traffic intensity and
structure with the intensity of noise caused by traffic at urban intersections.

The existing global practice uses different models for predicting road traffic noise, such
as empirical models [14], comparison of road traffic noise prediction models (CoRTN) [15],
German standard (Richtlinien für den Lärmschutz an Straben), RLS-90 [16] and NMR-
96 [17], etc. They are adapted to the characteristics of the vehicle fleet of the urban envi-
ronment for which they were developed. In addition, almost all models and research are
focused on traffic sections far from traffic lights, intersections, and pedestrian crossings,
where it can be assumed that motor vehicles move at a constant speed in accordance with
the general limit vehicle speed of 50 km/h. Urban politics in Serbia is increasingly focused
on pedestrian safety, so the number of sections with traffic lights and pedestrian crossings is
highly increasing. For example, in the city of Novi Sad (urban population of 277.522), there
are more than 100 locations with traffic lights and pedestrian crossings, and that number is
increasing every year. Experimental results of measuring noise levels in the Republic of
Serbia [18] significantly deviate from the values which the given models can obtain. This
indicates a need to develop a new model more suitable for local traffic conditions (vehicle
fleet is far older than in the EU, etc.).

Considering that intersections are critical elements of road networks in terms of air
quality impact [19], we have focused our research on these traffic sections, intersections
with traffic lights, and pedestrian crossings. Since vehicle movement and speed are highly
limited at these sections (less than 20 km/h), the surface texture is not the most influential
factor in tire/road noise generation [20,21]. Furthermore, a noise level model was generated
using all vehicles at the intersection (from all four approaches). This fact led us to the need
for a new model focusing on engine noise and vehicle sirens, etc.

Noise levels were analyzed in a scenario that included drive-through (green traffic light
and 50 km/h vehicle speed without stopping) and stop-and-go (red-to-green traffic light
and vehicles that stop and start driving again). As a result, a more detailed categorization
of motor vehicles is introduced, while the correction factor is determined for more accurate
predictions and efficient traffic flow management. In addition, territorial and social traffic
parameters (age of the vehicle fleet, road type, quality and “traffic etiquette” of participants)
were also analyzed according to possibilities.

Based on the experimental results’ measurements of equivalent noise levels and
publicly accessible data in the city of Novi Sad, a functional connection was established
between the selected traffic flow and equivalent noise level at a reference distance from the
crossroad axes. The ability to use publicly accessible data (annual measurements of noise
levels [22], annual studies of traffic counting at intersections [23], etc.) and vehicle counting
system data, etc., to generate a useable prediction of traffic conditions [24] and noise levels
in the observed environment is one of the basic characteristics of the enclosed model. The
model can be used quite efficiently by various parties, such as designers, architects, and
even real-estate agents/buyers.

The methodology used in the realization of the study is in complete accordance with
the EU Commission’s policies for estimating noise exposure, mapping and analyzing the
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related data on noise exposure [25–27]. Furthermore, all of the existing studies and research
conducted in Novi Sad concerning noise analysis and traffic counting, as well as other
analyses (counting public transport passengers, analysis of vehicle speed on the street
network, city parking analysis, household surveys, etc.) were analyzed.

Recently, artificial neural network (ANN) models were applied to estimate urban noise
prediction [28,29].

The ANN models were capable of predicting urban noise with increased precision.
Despite a slight reduction in the exactness of the acquired results, the values received by
the ANN models were also quite acceptable. The developed models employed activation
functions to estimate the noise level according to the set of input variables and are adjusted
to the environment in which the models were constructed to evaluate the traffic noise [28].

Several studies have demonstrated this technique’s suitability in reliable traffic noise
predictions [28,30–33].

The number of hidden nodes influences the precision of the equivalent continuous
sound level prediction, with models with fewer nodes than the starting number of nodes
being better [34].

Non-linear models, including random forest regression (RFR) and ANN models,
performed better than linear models, mostly because relations among examined variables
were inherently non-linear. In the works by Liu et al., [35] and Staab et al., [36], the accuracy
of the RFR was emphasized in predicting noise level based on the traffic volume.

In the study by Liu et al. [35], a hybrid approach was applied, combining a traffic
propagation and RFR model to map the average daily total environment noise levels, with
a resolution of 30 m × 30 m. Integrating deterministic and stochastic approaches could
furnish precise total environmental noise assessments for extensive geographic areas where
sound level measurements are obtainable.

In the study by Adulaimi et al. [37], an accurate overview of the crucial variables
which exert a significant impact on traffic noise are described using computing techniques,
including decision trees, random forests, linear regression and support vector regression.
The results indicate that the RF model was the most efficacious and reliable at anticipating
traffic noise values based on the performance analysis of the developed models and the
performance criteria of R2 and RMSE.

The objective of this study was to investigate the possibility of predicting noise level
based on the traffic volume at intersections, using two non-linear empirical models, an
artificial neural network and random forest models.

2. Materials and Methods

For this research, a total of six locations (intersections) were selected in Novi Sad,
Serbia, where noise and traffic flow intensity and structure were simultaneously mea-
sured (Figure 1). Counting and measuring were performed in 24-h intervals, where five
intersections were selected for forming the model, and one for testing.

The following four criteria were adopted for selecting the locations for counting and
measuring noise:

1. High intensity of traffic load (more than 3000 veh/h);
2. Presence of trucks and buses;
3. Intersection with signalization;
4. Street fronts and buildings near the intersection.

Intersection R1—High and medium-height buildings at all corners, no trees, presence
of buses, but no trucks, pedestrians at all approaches, traffic signals.

Intersection R2—High buildings at two of four corners, no trees, presence of buses
and trucks, pedestrians at all approaches, traffic signals.

Intersection R3—High buildings at three of four corners, trees at fourth corner, pres-
ence of buses and trucks, pedestrians at all approaches, traffic signals.
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Dušana, R4—Boulevard Cara Lazara–Boulevard oslobođenja, R5—Partizanska street–Temerinska 
street 
(https://www.google.com/maps/search/novi+sad+street+view/@45.2671726,19.8416325,18z?hl=en, 
accessed on 19 June 2019). 
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Figure 1. The intersections selected for the research: R1—Boulevard Oslobod̄enja–Novosadskog
sajma street, R2—Boulevard Kralja Petra I–Rumenačka street, R3—Boulevard Cara Lazara–
Boulevard Cara Dušana, R4—Boulevard Cara Lazara–Boulevard oslobod̄enja, R5—Partizanska
street–Temerinska street (https://www.google.com/maps/search/novi+sad+street+view/@45.26
71726,19.8416325,18z?hl=en, accessed on 19 June 2019).

Intersection R4—No high buildings around the center of the intersection, trees at one
corner, presence of buses, no trucks, pedestrians at all approaches, traffic signals.

Intersection R5—No high buildings around the center of the intersection, no trees,
presence of trucks and buses, pedestrians at all approaches, traffic signals.

Intersection R6 (test intersection)—No high buildings around the center of the in-
tersection, trees at two of four corners, presence of trucks and buses, pedestrians at all
approaches, traffic signals.

2.1. Noise Measurement Methodology

The measurement was conducted using the CESVA TA120 device (CESVA instruments
S.L.U., Barcelona, Spain) during June 2019. Measurement started on 19 June 2019, and
concluded on 25 June 2019. A 24-h session of noise level measurement was conducted at
each location. The measurement was conducted according to the recommendations of the
following regulations:

1. Rulebook on the methods of noise measurement, contents and scope of the noise
measurement reports, [38],

2. Rulebook on the content and methods of development of strategic noise maps and the
manner of their presentation to the public, [38],

3. ISO Standard 1996-1:2016 [27].

Serbian regulations are in line with EU Directives 2002/49/EC and 2003/613/EC and
ISO standards [27]. Therefore, noise level analysis was conducted for sequential 15-min
intervals. Following the rules of The Ministry of Environmental Protection, Government of
Serbia, A-weighted levels for daytime L_day, evening L_evening and nighttime L_night
during a 24-h measurement period were calculated [39]. The daytime measurement interval
was from 6 a.m. to 6 p.m., the evening interval from 6 p.m. to 10 p.m. and the nighttime
interval from 10 p.m. to 6 a.m.

https://www.google.com/maps/search/novi+sad+street+view/@45.2671726,19.8416325,18z?hl=en
https://www.google.com/maps/search/novi+sad+street+view/@45.2671726,19.8416325,18z?hl=en
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During the measurements, meteorological parameters (air temperature, precipitation,
rain, etc.) that might influence noise measurement in the conducted procedure were moni-
tored. The measurement was only conducted during intervals of consistent meteorological
conditions, so the effect of the aforementioned meteorological parameters can be regarded
as negligible. The measurement periods with meteorological parameters that showed sig-
nificant deviations were particularly analyzed and repeated when necessary. The influence
of meteorological parameters on urban noise propagation in an observed environment is a
subject for further research.

One limitation of the neural network model was its reliance on acoustic measurements.
The problem was that these measurements were often flawed because the sonometers
did not only measure vehicle sounds, but also other sounds, which should not have
been considered.

Noise level measurement was conducted on 19 June, 21 June, 24 June and 26 June
2019, because these days are common for traffic counting. Figure 2 shows the values of
meteorological parameters by day during the period of noise level measurement.
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For the purposes of developing the model and determining noise level reduction,
simultaneous measurements were conducted at distances of 5 m and 50 m from the road’s
axis using two identical measuring devices (Figure 3). The measurements confirmed the
results of previous research regarding noise propagation from the road’s axis [40].
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2.2. Traffic Counting Methodology

Along with recording noise levels, traffic counting was simultaneously performed at
each location.

In addition to traffic volume in 15-min time intervals, data on the structure of the
traffic flow were also collected. Vehicles were placed in the following categories:

- PA—Passenger car,
- BUS *—Bus,
- HV *—Heavy vehicles,
- BUS + HV *—Bus and heavy vehicles.

For the study, the vehicle categories marked with an asterisk (*) were especially
significant because these vehicles produce a higher noise intensity when passing through
an intersection or waiting for the green light [41].

2.3. Non-Linear Regression Models

Non-linear regression models for noise prediction and noise map calculations are
widely used to represent exposure to road traffic noise. However, frequently, their accu-
racy and the quality of the noise estimates are sometimes limited. In a paper by Aguil-
era et al. [42], the application of land use regression modelling was used to investigate
the long-term spatial variability of road traffic noise in an urban area within three Euro-
pean cities.

In an article by Ryan and LeMasters [43], a brief summary and the application of
non-linear regression models was presented outlining similarities and differences of the
variables included in the model, model development and model validation. This article
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used non-linear regression to characterize air pollution exposure and health effects for
individuals residing within urban areas.

2.3.1. ANN Modeling

A multi-layer perceptron (MLP) concept, with three layers (input, hidden and output)
was applied for modelling the artificial neural network model (ANN) for the prediction of
noise level based on the traffic volume at intersections. In the first ANN model (ANN1), PA
and HV parameters were used for the prediction of Laeq, while within ANN2 modelling,
location (R1-R5) and time period (morning, noon, afternoon and night) were used as
categorical variables. Parameters such as BUS, HV and PA were used as numerical variables
for the ANN2 model. According to the known references, the ANN models were proven
entirely suited to estimating non-linear functions [28–30]. Prior to computation, the input
and output database was normalized to enhance the conduct of the ANN model. During
this iterative process, input data were repeatedly presented to the network [44,45]. The
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was used as an iterative method for
solving unconstrained non-linear optimization during the ANN modelling.

The experimental database for ANN was randomly divided into training, cross-
validation and testing data (with 70%, 15% and 15% of experimental data, respectively).
The training dataset was used for the learning cycle of ANN and also for the evaluation
of the optimal number of neurons in the hidden layer and the weight coefficient of each
neuron in the network. A series of different topologies was used, in which the number
of hidden neurons varied from 5 to 10, and the training process of the network was run
100,000 times with random initial values of weights and biases. The optimization process
was performed based on validation error minimization. It was assumed that successful
training was achieved when learning and cross-validation curves approached zero.

Coefficients associated with the hidden layer (weights and biases) were grouped in
matrices W1 and B1. Similarly, coefficients associated with the output layer were grouped in
matrices W2 and B2. It is possible to represent the neural network by using matrix notation
(Y is the matrix of the output variables, f 1 and f 2 are transfer functions in the hidden and
output layers, respectively, and X is the matrix of input variables [29,40]:

Y = f1(W2 · f2(W1 · X + B1) + B2) (1)

Weight coefficients (elements of matrices W1 and W2 and vectors B1 and B2) were
determined during calculation in the ANN learning cycle. The values of these coefficients
were revised by applying optimization procedures to minimize the error between the
network and experimental outputs [44,46,47], according to the sum of squares (SOS). The
well-known BFGS algorithm was used to accelerate and consolidate the convergence in
the finding the solution [48]. The coefficient of determination of the ANN model was
investigated as a parameter to inspect the developed ANN model’s performance.

Global Sensitivity Analysis

Yoon’s interpretation method was used to determine the relative influence of location
(R1–R5), time period (morning, noon, afternoon and night), BUS, HV and PA on noise
level [49]. This method was applied on the basis of the weight coefficients of the developed
ANN model.

Yoon’s method of global sensitivity was used to calculate the direct influence of the
input parameters on the output variables, corresponding to the weighting coefficients
within the ANN model [49]:

RIij(%) =

n
∑

k=0
(wik · wkj)

m
∑

i=0

∣∣∣∣ n
∑

k=0
(wik · wkj)

∣∣∣∣ · 100% (2)
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where w—denotes the weighting factor in the ANN model, i—input variable, j—output
variable, k—hidden neuron, n—number of hidden neurons and m—number of inputs.

2.3.2. RFR Modeling

The random forest model (RF) is a widely used machine learning algorithm developed
upon decision trees to foresee outputs according to prediction variables [50]. The RF model
can be implemented for classification or regression purposes. The random forest regression
method is used for the mean prediction of individual trees, consistent with decision trees
developed according to the training dataset [35]. In addition, the RF model can reveal the
importance of features. The RFR models were constructed upon the data presented in
Table 1. Similarly, to the ANN model, the inputs for the RFR models were traffic volume
parameters at intersections. During random forest regression model calculation for the
prediction of noise level, a large set of decision trees was constructed, and each tree was
built according to the specific bootstrap sample within a training dataset [51]. In this
study, the bootstrap function was employed to randomly divide the dataset into coherent
subsets, in the training and test subsets, which covered 50% and 40% of the entire data,
respectively [52]. New sub-samples were selected from the input sample dataset and
multiple trees were added to the RFR structure to fit the obtained sub-samples. Throughout
the training cycle, the RFR model estimated the results of the formed trees to minimize the
prediction error [50]. During RFR modelling, location (R1-R5) and time period (morning,
noon, afternoon and night) were used as categorical variables, while BUS, HV and PA were
used as numerical variables. Over the RFR calculation, the number of trees parameter was
set to 100, 200, 300, 400, 500 and 1000, while the random test data proportion was set to
40% and the sample proportion was 50%.

Table 1. Descriptive statistics of the experimental results.

Location Parameter BUS HV BUS + HV PA Laeq

R1 Mean 7.792 27.729 35.521 632.521 72.206
St.Dev. 3.744 22.480 24.736 378.003 2.943
Min. 0 0 0 30 64.910
Max. 16 70 81 1100 75.790

R2 Mean 13.156 47.219 60.375 584.333 69.942
St.Dev. 6.758 36.836 41.527 332.679 4.149
Min. 1 3 4 78 59.130
Max. 33 118 142 1103 73.350

R3 Mean 22.021 29.635 51.656 689.719 70.305
St.Dev. 11.635 24.512 32.992 389.268 3.695
Min. 0 1 1 46 61.090
Max. 43 82 109 1131 77.210

R4 Mean 12.042 27.573 39.615 783.000 68.719
St.Dev. 6.961 20.728 25.663 409.785 3.903
Min. 0 1 2 109 56.970
Max. 31 73 88 1322 72.650

R5 Mean 7.417 22.115 29.531 548.240 70.233
St.Dev. 3.873 17.965 21.104 323.031 2.093
Min. 0 0 0 29 64.870
Max. 14 61 75 997 72.590

R6 Mean 8.865 29.083 37.948 551.667 68.096
St.Dev. 4.990 24.346 26.318 319.610 3.672
Min. 0 0 1 21 55.790
Max. 24 80 87 1009 71.660

St.Dev.—standard deviation, Min.—minimum, Max.—maximum.

The ANN and RFR models were calculated utilizing StatSoft Statistica, ver. 10.0,
Palo Alto, CA, USA.
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2.4. The Accuracy of the Model

The computational confirmation of the constructed non-linear models was tested
using standard statistical tests, such as the coefficient of determination (R2), reduced chi-
square (χ2), mean bias error (MBE), root mean square error (RMSE), mean percentage error
(MPE), the sum of squared errors (SSE) and average absolute relative deviation (AARD),
MBE, RMSE, MPE, SSE and AARD. These commonly used parameters can be calculated as
follows [52]:

χ2 =

N
∑

i=1
(xexp,i − xpre,i)

2

N − n
(3)

RMSE =

[
1
N

·
N

∑
i=1

(xpre,i − xexp,i)
2

]1/2

(4)

MBE =
1
N

·
N

∑
i=1

(xpre,i − xexp,i) (5)

MPE =
100
N

·
N

∑
i=1

(

∣∣xpre,i − xexp,i
∣∣

xexp,i
) (6)

SSE =
N

∑
i=1

(xpre,i − xexp,i)
2 (7)

AARD =
1
N

·
N

∑
i=1

∣∣∣∣∣ xexp,i − xpre,i

xexp,i

∣∣∣∣∣ (8)

where xexp,i are experimental values, xpre,i are the model predicted values, and N and n are
the number of observations and constants, accordingly.

3. Results

Based on the data collected by traffic counting and noise measurement, a compara-
tive analysis of traffic intensity was conducted using 15-min intervals and noise values
expressed in the equivalent continuous sound level—Laeq (dBA at the same time cross-
sections). Figure 4 shows comparative values at the five intersections (R1–R5) used for
creating the model, while the results for the sixth intersection were applied to verify
the models.

Trucks and buses were placed into the same group as they have very similar noise and
emission characteristics, and the preliminary statistical processing showed no significant
difference in the results whether they were analyzed as separate groups of trucks, buses,
or together.

By analyzing the collected data, it was determined that, in addition to traffic, other
factors might influence noise intensity. One of the factors was the noise caused by poor
weather conditions that occurred during the recording (wind and thunder). This parameter
was eliminated by minute reports on the noise recording, so that all the instantaneous and
very high values were eliminated. Measurements with longer intervals of poor weather
conditions were repeated. The influence of reflection from the facades of nearby objects
was eliminated due to the positioning of the measurement device and in accordance with
recommendations [27]. The second factor of influence on the noise level was introduced due
to the characteristics of vertical traffic signalization and street lighting, which were used as
carriers for the measurement devices. The limitation that the used poles introduced mainly
relates to the distance from the axis of the observed roadway, which was sometimes less
than the recommended [27] (5 m instead of 7.5 m). Furthermore, it can be concluded that
vibrations and audio signalization of the used traffic signalization poles also influence the
measured values. By analyzing different intersections, i.e., positions of noise measurement
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devices compared to the observed roadways, it was determined that the correction factor
amounts to 5 dB.
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3.1. Mathematical Models
3.1.1. ANN1 Model

The acquired optimal neural network models showed good generalization capabilities
for the experimental data and could be used to accurately predict noise level based on
the traffic volume at intersections. The number of neurons for the ANN model was five
(network MLP 2-5-1) to obtain the highest R2 values (the R2 values for prediction of
output variables were 0.681, 0.692 and 0.757, for training, testing and validation cycles,
respectively), as seen in Table 2.

Table 2. Artificial neural network model summary (performance and errors) for training, testing and
validation cycles.

Network
Performance Error Train.

Algorithm
Error
Funct.

Hidden
Activation

Output
ActivationTrain. Test. Valid. Train. Test. Valid.

MLP
2-5-1 0.681 0.692 0.757 2.238 1.852 1.728 BFGS 84 SOS Tanh Logistic

Performance term represents the coefficients of determination, while error terms indicate a lack of data for the
ANN model.
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A comparison between experimentally obtained and model-predicted noise level
values based on the traffic volume at intersections for all developed models is shown in
Figure 5. The potential of the ANN1 model to predict noise level values based on the traffic
volume at intersections is presented by scatter plots (Figure 5b).
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The obtained ANN1 model for predicting output variables was built upon 21 weights–bias
coefficients due to the high non-linearity of the observed system [53,54].

The goodness of fit between experimental measurements and model-calculated out-
puts, represented as ANN performance, are shown in Table 3.

Table 3. The “goodness of fit” tests for the developed models.

Model χ2 RMSE MBE MPE SSE AARD R2 Skew Kurt Mean StDev Var

ANN1 4.160 2.038 −0.080 2.236 2367.430 1937.642 0.697 0.070 1.303 −0.080 2.038 4.153
RFR1 4.073 2.016 0.076 2.198 2318.340 1602.760 0.703 −0.056 1.391 0.076 2.017 4.067

ANN2 0.559 0.747 −0.049 0.807 320.196 652.730 0.959 0.224 2.503 −0.049 0.746 0.557
RFR2 1.837 1.354 0.016 1.357 1056.331 895.384 0.882 −0.704 3.678 0.016 1.355 1.837

3.1.2. ANN2 Model

The acquired optimal neural network models showed good generalization capabilities
for the experimental data and could be used to accurately predict noise level based on
the traffic volume at intersections. The number of neurons for the ANN model was seven
(network MLP 13-7-1) to obtain the highest R2 values (the R2 values for prediction of
output variables were 0.962, 0.943 and 0.970, for training, testing and validation cycles,
respectively), as seen in Table 2.

The obtained ANN2 model for the prediction of output variables was built upon
106 weights–bias coefficients due to the high non-linearity of the observed system. The
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goodness of fit between experimental measurements and model-calculated outputs, repre-
sented as ANN performance, are shown in Table 3.

The acquired optimal neural network models showed good generalization capabilities
for the experimental data and could be used to accurately predict noise level based on
the traffic volume at intersections. The number of neurons for the ANN model was 13
(network MLP 13-13-1) to obtain the highest R2 values (the R2 values for prediction of
output variables were 0.962, 0.943 and 0.970 for training, testing and validation cycles,
respectively), as seen in Table 2.

In the literature, several studies can be found verifying the artificial neural network’s
model’s ability to predict emission of traffic noise [29,55–58]. In the research by Genaro
et al. [28], Laeq was evaluated utilizing street-level data sourced from Granada, Spain.
The artificial neural network model results were compared with the results from other
mathematical models. It was observed that predictions using the neural network outper-
formed the other mathematical models. Mansourkhaki et al. [34] operated ANN-MLP and
ANN-RBF to evaluate Laeq according to speed, traffic volume and percentage of heavy
vehicles in Tehran, Iran. By comparing the predicted outcomes, the ANN-MLP network
achieved more acceptable results compared to the ANN-RBF model. Hamoda [33] applied
the neural networks analysis to predict construction noise in the city of Kuwait. The results
demonstrate that the general regression network-based neural models accomplished more
acceptable accuracy compared to the backpropagation-established network’s results.

3.1.3. RFR Model

The acquired optimal random forest models showed good prediction capabilities for
the experimental data and could be used to adequately foresee noise level based on the
traffic volume at intersections. The number of trees for the RFR models was 1000 to obtain
the highest R2 values (during the training cycle, the R2 value for the output variables was
0.882); see Table 3. The RFR and ANN models had an insignificant lack of fit tests, which
means the models satisfactorily predicted output variables.

A high R2 is indicative that the variation was accounted for and that the data fitted
the proposed RFR model satisfactorily [59,60]. The RMSE was 1.354, and when comparing
this result with RMSE for the ANN model, it can be noticed that the ANN model offered a
more acceptable RMSE of 0.747. This finding is also in favor of using ANN for noise level
prediction based on the traffic volume at intersections.

3.1.4. Model Testing

Intersection R6—Futoški put–Bulevar Kneza Miloša-Bulevar patrijarha Pavla—was
selected for model testing. The presence of trucks characterizes this intersection, but for
the larger part of the day, their numbers do not exceed 10% of total traffic. There are also
no nearby buildings that would increase the noise level. Therefore, to compare the values
acquired by the model, a control noise recording was performed at intersection R6 during a
24-h interval, on 26 June 2019. Simultaneously, traffic counting was performed in 15-min
intervals, as previously shown.

Figure 6 shows that the deviations between the measured values and the values
acquired with the model deviate by less than 2 dB, considering the fact that these differences
are mostly less than 1 dBA. Statistically speaking, the difference of 2 dBA compared to the
minimum and maximum measured noise values (min. 55.78, max. 71.66 dBA) is between:

∆dBA = 2.8 − 3.6% (9)

Every value that amounts to less than 5% of deviation can be considered a minimal
deviation, that is, as a good indicator of the model’s precision.

Regardless of the model’s precision, it does have certain limitations. Namely, the
model’s basic limitation is that it is bound exclusively to traffic noise, and not to noise
pollution, so the occurrence of a secondary noise source may cause the data acquired by
the model to significantly deviate from the actual values. During model development,
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a corrective value for noise caused by traffic and city infrastructure was used based on
measurement; however, in situations where an intersection is surrounded by a large number
of tall buildings, additional deviation from the defined value of 3–6 dBA may occur [53].

Sustainability 2022, 14, 12443 14 of 19 
 

3.1.4. Model Testing 

Intersection R6—Futoški put–Bulevar Kneza Miloša-Bulevar patrijarha Pavla—was 

selected for model testing. The presence of trucks characterizes this intersection, but for 

the larger part of the day, their numbers do not exceed 10% of total traffic. There are also 

no nearby buildings that would increase the noise level. Therefore, to compare the values 

acquired by the model, a control noise recording was performed at intersection R6 during 

a 24-h interval, on 26 June 2019. Simultaneously, traffic counting was performed in 15-min 

intervals, as previously shown. 

Figure 6 shows that the deviations between the measured values and the values ac-

quired with the model deviate by less than 2 dB, considering the fact that these differences 

are mostly less than 1 dBA. Statistically speaking, the difference of 2 dBA compared to the 

minimum and maximum measured noise values (min. 55.78, max. 71.66 dBA) is between: 

∆𝑑𝐵𝐴 = 2.8 − 3.6% (9) 

Every value that amounts to less than 5% of deviation can be considered a minimal 

deviation, that is, as a good indicator of the model’s precision. 

 

Figure 6. Comparison between experimentally obtained and model-predicted values of calculated 

outputs for Laeq Gras location for (a) ANN1 model, (b) RFR1 model, (c) ANN2 model, (d) RFR2 

model. 

Regardless of the model’s precision, it does have certain limitations. Namely, the 

model’s basic limitation is that it is bound exclusively to traffic noise, and not to noise 

pollution, so the occurrence of a secondary noise source may cause the data acquired by 

the model to significantly deviate from the actual values. During model development, a 

corrective value for noise caused by traffic and city infrastructure was used based on 

measurement; however, in situations where an intersection is surrounded by a large num-

ber of tall buildings, additional deviation from the defined value of 3–6 dBA may occur 

[53]. 

Figure 6. Comparison between experimentally obtained and model-predicted values of calculated outputs
for Laeq Gras location for (a) ANN1 model, (b) RFR1 model, (c) ANN2 model, (d) RFR2 model.

Other limitations refer to the location of noise measurement. Namely, noise that was
measured and that is shown by the obtained method relates to the distance of up to 5–7.5 m
from an intersection. Measurements at longer distances showed a drop in noise intensity of
up to 5 dBA at 50 m from an intersection (comparative measurement). The goodness of fit
between experimental measurements and model-calculated outputs for Laeq Gras location
(R6), represented as ANN performance, are shown in Table 4.

Table 4. The “goodness of fit” tests for the developed ANN model.

Model χ2 RMSE MBE MPE SSE AARD R2 Skew Kurt Mean StDev Var

ANN1 4.736 2.165 −1.729 2.668 163.033 107.967 0.877 −1.342 3.689 −1.729 1.310 1.716
RFR1 3.698 1.913 −1.346 2.273 177.343 112.211 0.872 −1.262 3.898 −1.346 1.366 1.867

ANN2 0.446 0.664 −0.038 0.762 42.234 48.705 0.968 −0.412 2.170 −0.038 0.667 0.445
RFR2 1.918 1.378 −0.426 1.377 166.464 88.218 0.898 −1.929 5.493 −0.426 1.317 1.734

The potential of the ANN model to predict calculated outputs for Laeq Gras location
is presented by scatter plots (Figure 6). The goodness of fit between experimental mea-
surements and model-calculated outputs for Laeq Gras location (R6), represented as RFR
performance, are shown in Table 4. The potential of the RFR model to predict calculated
outputs for Laeq Gras location is presented by scatter plots (Figure 6).

Distribution patterns of average Laeq value during the day, related to the investigated
locations in Novi Sad, based on the ANN1 model, are shown in Figure 7.
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3.1.5. Global Sensitivity Analysis—Yoon’s Interpretation Method

In this section, the influence of input variables, used to build the ANN model on the
relative importance of Laeq, is studied. According to Figure 8, BUS was the most influential
parameter, with an approximately relative importance of 23.39%, while the influence of
nighttime was negative, showing an importance of −10.68%. Futoska and Temerinska
locations also showed a positive influence on Laeq, showing a relative importance of 11.75%
and 10.18%. Jiménez-Uribe et al. [61] also revealed that the number of vehicles and the noise
levels differed significantly according to the time of day and particular location. In addition,
the noise levels were associated with the number of cars, buses and heavy vehicles.
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4. Conclusions

As one of the main pollutants, in addition to hazardous gases, noise is a severe risk to
people’s health, caused mainly by traffic in residential and business zones.

For this research, a total of five typical intersections in Novi Sad, Serbia, were selected,
as well as one test intersection, which was used for model testing.

The measurement results show a high degree of correlation between noise intensity
and the number of cars, as well as the number of buses and trucks. An increase in noise
intensity that occurred during a heavier flow of buses and/or trucks was determined at
almost every intersection.

Obtained non-linear models for forecast traffic noise levels gave high anticipation ac-
curacy of the equivalent continuous sound level (Laeq), with R2 values of 0.697, 0.703, 0.959
and 0.882, for two artificial neural networks and two random forest models, respectively.
The current study suggests that RFR and ANN modelling can be successfully exploited for
traffic noise level prediction. The incorporation of more input data can improve the efficacy
of all tested models. This study has the potential to direct a new way to promising research
related to traffic noise prediction.

The limitations of the obtained models are found in the fact that it is related exclusively
to traffic flows, that is, the model does not consider noise pollution which may occur
independently. Furthermore, the values of the noise reflecting from nearby objects were
not precisely determined.

Further research on the dependency between traffic and noise should be conducted to
determine other parameters that might be related to traffic flow and noise intensity.

Author Contributions: Conceptualization, N.R., M.M and V.M.; methodology, L.P. and B.L.; software,
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